Research ArticleMATERIALS SCIENCE

Ultrafast solid-liquid intercalation enabled by targeted microwave energy delivery

See allHide authors and affiliations

Science Advances  16 Dec 2020:
Vol. 6, no. 51, eabd9472
DOI: 10.1126/sciadv.abd9472

Abstract

In chemical reactions, the breaking and formation of chemical bonds usually need external energy to overcome the activation barriers. Conventional energy delivery transfers energy from heating sources via various media, hence losing efficiency and inducing side reactions. In contrast, microwave (MW) heating is known to be highly energy efficient through dipole interaction with polar media, but how exactly it transmits energy to initiate chemical reactions has been unknown. Here, we report a rigorous determination of energy delivery mechanisms underlying MW-enabled rapid hydrothermal synthesis, by monitoring the structure and temperature of all the involved components as solid-liquid intercalation reaction occurs using in situ synchrotron techniques. We reveal a hitherto unknown direct energy transmission between MW irradiation source and the targeted reactants, leading to greatly reduced energy waste, and so the ultrafast kinetics at low temperature. These findings open up new horizons for designing material synthesis reactions of high efficiency and precision.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances