Research ArticleMICROBIOLOGY

Stochastic transcriptional pulses orchestrate flagellar biosynthesis in Escherichia coli

See allHide authors and affiliations

Science Advances  05 Feb 2020:
Vol. 6, no. 6, eaax0947
DOI: 10.1126/sciadv.aax0947


The classic picture of flagellum biosynthesis in Escherichia coli, inferred from population measurements, depicts a deterministic program where promoters are sequentially up-regulated and are maintained steadily active throughout exponential growth. However, complex regulatory dynamics at the single-cell level can be masked by bulk measurements. Here, we discover that in individual E. coli cells, flagellar promoters are stochastically activated in pulses. These pulses are coordinated within specific classes of promoters and comprise “on” and “off” states, each of which can span multiple generations. We demonstrate that in this pulsing program, the regulatory logic of flagellar assembly dictates which promoters skip pulses. Surprisingly, pulses do not require specific transcriptional or translational regulation of the flagellar master regulator, FlhDC, but instead appears to be essentially governed by an autonomous posttranslational circuit. Our results suggest that even topologically simple transcriptional networks can generate unexpectedly rich temporal dynamics and phenotypic heterogeneities.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances