Research ArticleChemistry

Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency

See allHide authors and affiliations

Science Advances  07 Feb 2020:
Vol. 6, no. 6, eaay0107
DOI: 10.1126/sciadv.aay0107


Monolayer-protected atomically precise silver clusters display low photoluminescence (PL) quantum yield (QY) and susceptibility under ambient conditions, and their chiroptical activities also remain underdeveloped. Here, we report enantiomers of an octahedral Ag6 cluster prepared via one-step synthesis using designed chiral ligands at ambient temperature. These clusters exhibit a highest PLQY (300 K) >95.0% and retain their structural integrity and emission up to 150°C in air. Atomically precise structural determination combined with photophysical and computational analysis revealed that thermally activated delayed fluorescence, observed in silver cluster systems, is responsible for the high PLQY, which combines chirality in excited states to generate strong circularly polarized luminescence. These unprecedented findings open up horizons of investigation of monolayer-protected silver clusters for future luminescence applications.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances