Abstract
An acute myocardial infarction (AMI) induces a sterile inflammatory response that facilitates further heart injury and promotes adverse cardiac remodeling. Interleukin-1β (IL-1β) plays a central role in the sterile inflammatory response that results from AMI. Thus, IL-1β blockage is a promising strategy for treatment of AMI. However, conventional IL-1β blockers lack targeting specificity. This increases the risk of serious side effects. To address this problem herein, we fabricated platelet microparticles (PMs) armed with anti–IL-1β antibodies to neutralize IL-1β after AMI and to prevent adverse cardiac remodeling. Our results indicate that the infarct-targeting PMs could bind to the injured heart, increasing the number of anti–IL-1β antibodies therein. The anti–IL-1β platelet PMs (IL1-PMs) protect the cardiomyocytes from apoptosis by neutralizing IL-1β and decreasing IL-1β–driven caspase-3 activity. Our findings indicate that IL1-PM is a promising cardiac detoxification agent that removes cytotoxic IL-1β during AMI and induces therapeutic cardiac repair.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.