Research ArticleMATERIALS SCIENCE

Scalable Majorana vortex modes in iron-based superconductors

See allHide authors and affiliations

Science Advances  28 Feb 2020:
Vol. 6, no. 9, eaay0443
DOI: 10.1126/sciadv.aay0443

Abstract

The iron-based superconductor FeTexSe1−x is one of the material candidates hosting Majorana vortex modes residing in the vortex cores. It has been observed by recent scanning tunneling spectroscopy measurement that the fraction of vortex cores having zero-bias peaks decreases with increasing magnetic field on the surface of FeTexSe1−x. The hybridization of two Majorana vortex modes cannot simply explain this phenomenon. We construct a three-dimensional tight-binding model simulating the physics of over a hundred Majorana vortex modes in FeTexSe1−x. Our simulation shows that the Majorana hybridization and disordered vortex distribution can explain the decreasing fraction of the zero-bias peaks observed in the experiment; the statistics of the energy peaks off zero energy in our Majorana simulation are in agreement with the experiment. These agreements lead to an important indication of scalable Majorana vortex modes in FeTexSe1−x. Thus, FeTexSe1−x can be one promising platform having scalable Majorana qubits for quantum computing.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances