A chiral switchable photovoltaic ferroelectric 1D perovskite

See allHide authors and affiliations

Science Advances  28 Feb 2020:
Vol. 6, no. 9, eaay4213
DOI: 10.1126/sciadv.aay4213


Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral. Spectroscopic and structural analysis, and first-principles calculations, determine the material to be a previously unknown low-dimensional hybrid perovskite (R)-(−)-1-cyclohexylethylammonium/(S)-(+)-1 cyclohexylethylammonium) PbI3. Optical and electrical measurements characterize its semiconducting, ferroelectric, switchable pyroelectricity and switchable photoferroelectric properties. Temperature dependent structural, dielectric and transport measurements reveal a ferroelectric-paraelectric phase transition. Circular dichroism spectroscopy confirms its chirality. The development of a material with such a combination of these properties will facilitate the exploration of phenomena such as electric field and chiral enantiomer–dependent Rashba-Dresselhaus splitting and circular photogalvanic effects.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances