Research ArticleAPPLIED SCIENCES AND ENGINEERING

High-strength and fibrous capsule–resistant zwitterionic elastomers

See allHide authors and affiliations

Science Advances  01 Jan 2021:
Vol. 7, no. 1, eabc5442
DOI: 10.1126/sciadv.abc5442

Abstract

The high mechanical strength and long-term resistance to the fibrous capsule formation are two major challenges for implantable materials. Unfortunately, these two distinct properties do not come together and instead compromise each other. Here, we report a unique class of materials by integrating two weak zwitterionic hydrogels into an elastomer-like high-strength pure zwitterionic hydrogel via a “swelling” and “locking” mechanism. These zwitterionic-elastomeric-networked (ZEN) hydrogels are further shown to efficaciously resist the fibrous capsule formation upon implantation in mice for up to 1 year. Such materials with both high mechanical properties and long-term fibrous capsule resistance have never been achieved before. This work not only demonstrates a class of durable and fibrous capsule–resistant materials but also provides design principles for zwitterionic elastomeric hydrogels.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances