Research ArticlePHYSICS

Zero–trade-off multiparameter quantum estimation via simultaneously saturating multiple Heisenberg uncertainty relations

See allHide authors and affiliations

Science Advances  01 Jan 2021:
Vol. 7, no. 1, eabd2986
DOI: 10.1126/sciadv.abd2986


Quantum estimation of a single parameter has been studied extensively. Practical applications, however, typically involve multiple parameters, for which the ultimate precision is much less understood. Here, by relating the precision limit directly to the Heisenberg uncertainty relation, we show that to achieve the highest precisions for multiple parameters at the same time requires the saturation of multiple Heisenberg uncertainty relations simultaneously. Guided by this insight, we experimentally demonstrate an optimally controlled multipass scheme, which saturates three Heisenberg uncertainty relations simultaneously and achieves the highest precisions for the estimation of all three parameters in SU(2) operators. With eight controls, we achieve a 13.27-dB improvement in terms of the variance (6.63 dB for the SD) over the classical scheme with the same loss. As an experiment demonstrating the simultaneous achievement of the ultimate precisions for multiple parameters, our work marks an important step in multiparameter quantum metrology with wide implications.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances