Research ArticleMATERIALS SCIENCE

Real-time GW-BSE investigations on spin-valley exciton dynamics in monolayer transition metal dichalcogenide

See allHide authors and affiliations

Science Advances  05 Mar 2021:
Vol. 7, no. 10, eabf3759
DOI: 10.1126/sciadv.abf3759

Abstract

We develop an ab initio nonadiabatic molecular dynamics (NAMD) method based on GW plus real-time Bethe-Salpeter equation (GW + rtBSE-NAMD) for the spin-resolved exciton dynamics. From investigations on MoS2, we provide a comprehensive picture of spin-valley exciton dynamics where the electron-phonon (e-ph) scattering, spin-orbit interaction (SOI), and electron-hole (e-h) interactions come into play collectively. In particular, we provide a direct evidence that e-h exchange interaction plays a dominant role in the fast valley depolarization within a few picoseconds, which is in excellent agreement with experiments. Moreover, there are bright-to-dark exciton transitions induced by e-ph scattering and SOI. Our study proves that e-h many-body effects are essential to understand the spin-valley exciton dynamics in transition metal dichalcogenides and the newly developed GW + rtBSE-NAMD method provides a powerful tool for exciton dynamics in extended systems with time, space, momentum, energy, and spin resolution.

https://creativecommons.org/licenses/by/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances