GIP mediates the incretin effect and glucose tolerance by dual actions on α cells and β cells

See allHide authors and affiliations

Science Advances  12 Mar 2021:
Vol. 7, no. 11, eabf1948
DOI: 10.1126/sciadv.abf1948


Glucose-dependent insulinotropic polypeptide (GIP) communicates nutrient intake from the gut to islets, enabling optimal levels of insulin secretion via the GIP receptor (GIPR) on β cells. The GIPR is also expressed in α cells, and GIP stimulates glucagon secretion; however, the role of this action in the postprandial state is unknown. Here, we demonstrate that GIP potentiates amino acid–stimulated glucagon secretion, documenting a similar nutrient-dependent action to that described in β cells. Moreover, we demonstrate that GIP activity in α cells contributes to insulin secretion by invoking paracrine α to β cell communication. Last, specific loss of GIPR activity in α cells prevents glucagon secretion in response to a meal stimulus, limiting insulin secretion and driving glucose intolerance. Together, these data uncover an important axis by which GIPR activity in α cells is necessary to coordinate the optimal level of both glucagon and insulin secretion to maintain postprandial homeostasis.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances