Research ArticleCHEMICAL PHYSICS

Direct observation of hyperpolarization breaking through the spin diffusion barrier

See allHide authors and affiliations

Science Advances  30 Apr 2021:
Vol. 7, no. 18, eabf5735
DOI: 10.1126/sciadv.abf5735

Abstract

Dynamic nuclear polarization (DNP) is a widely used tool for overcoming the low intrinsic sensitivity of nuclear magnetic resonance spectroscopy and imaging. Its practical applicability is typically bounded, however, by the so-called “spin diffusion barrier,” which relates to the poor efficiency of polarization transfer from highly polarized nuclei close to paramagnetic centers to bulk nuclei. A quantitative assessment of this barrier has been hindered so far by the lack of general methods for studying nuclear polarization flow in the vicinity of paramagnetic centers. Here, we fill this gap and introduce a general set of experiments based on microwave gating that are readily implemented. We demonstrate the versatility of our approach in experiments conducted between 1.2 and 4.2 K in static mode and at 100 K under magic angle spinning (MAS)—conditions typical for dissolution DNP and MAS-DNP—and directly observe the marked dependence of polarization flow on temperature.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances