Isotopic evidence for acidity-driven enhancement of sulfate formation after SO2 emission control

See allHide authors and affiliations

Science Advances  05 May 2021:
Vol. 7, no. 19, eabd4610
DOI: 10.1126/sciadv.abd4610


After the 1980s, atmospheric sulfate reduction is slower than the dramatic reductions in sulfur dioxide (SO2) emissions. However, a lack of observational evidence has hindered the identification of causal feedback mechanisms. Here, we report an increase in the oxygen isotopic composition of sulfate (Δ17OSO42) in a Greenland ice core, implying an enhanced role of acidity-dependent in-cloud oxidation by ozone (up to 17 to 27%) in sulfate production since the 1960s. A global chemical transport model reproduces the magnitude of the increase in observed Δ17OSO42 with a 10 to 15% enhancement in the conversion efficiency from SO2 to sulfate in Eastern North America and Western Europe. With an expected continued decrease in atmospheric acidity, this feedback will continue in the future and partially hinder air quality improvements.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances