Research ArticleAGRICULTURE

Epitranscriptomic regulation of insecticide resistance

See allHide authors and affiliations

Science Advances  05 May 2021:
Vol. 7, no. 19, eabe5903
DOI: 10.1126/sciadv.abe5903


N6-methyladenosine (m6A) is the most prevalent messenger RNA modification in eukaryotes and an important posttranscriptional regulator of gene expression. However, the biological roles of m6A in most insects remain largely unknown. Here, we show that m6A regulates a cytochrome P450 gene (CYP4C64) in the global whitefly pest, Bemisia tabaci, leading to insecticide resistance. Investigation of the regulation of CYP4C64, which confers resistance to the insecticide thiamethoxam, revealed a mutation in the 5′ untranslated region of this gene in resistant B. tabaci strains that introduces a predicted m6A site. We provide several lines of evidence that mRNA methylation of the adenine at this position, in combination with modified expression of m6A writers, acts to increase expression of CYP4C64 and resistance. Collectively, these results provide an example of the epitranscriptomic regulation of the xenobiotic response in insects and implicate the m6A regulatory axis in the development of insecticide resistance.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances