Research ArticleMATERIALS SCIENCE

Charged skyrmions and topological origin of superconductivity in magic-angle graphene

See allHide authors and affiliations

Science Advances  05 May 2021:
Vol. 7, no. 19, eabf5299
DOI: 10.1126/sciadv.abf5299

Abstract

Topological solitons, a class of stable nonlinear excitations, appear in diverse domains as in the Skyrme model of nuclear forces. Here, we argue that similar excitations play an important role in a remarkable material obtained on stacking and twisting two sheets of graphene. Close to a magic twist angle, insulating behavior is observed, which gives way to superconductivity on doping. Here, we propose a unifying description of both observations. A symmetry breaking condensate leads to the ordered insulator, while topological solitons in the condensate—skyrmions—are shown to be charge 2e bosons. Condensation of skyrmions leads to a superconductor, whose physical properties we calculate. More generally, we show how topological textures can mitigate Coulomb repulsion and provide a previously unexplored route to superconductivity. Our mechanism not only clarifies why several other moiré materials do not show superconductivity but also points to unexplored platforms where robust superconductivity is anticipated.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances