Research ArticlePHYSICS

Fractional Coulomb blockade for quasi-particle tunneling between edge channels

See allHide authors and affiliations

Science Advances  07 May 2021:
Vol. 7, no. 19, eabf5547
DOI: 10.1126/sciadv.abf5547


In the fractional quantum Hall effect, the elementary excitations are quasi-particles with fractional charges as predicted by theory and demonstrated by noise and interference experiments. We observe Coulomb blockade of fractional charges in the measured magneto-conductance of a 1.4-micron-wide quantum dot. Interaction-driven edge reconstruction separates the dot into concentric compressible regions with fractionally charged excitations and incompressible regions acting as tunnel barriers for quasi-particles. Our data show the formation of incompressible regions of filling factors 2/3 and 1/3. Comparing data at fractional filling factors to filling factor 2, we extract the fractional quasi-particle charge e*/e = 0.32 ± 0.03 and 0.35 ± 0.05. Our investigations extend and complement quantum Hall Fabry-Pérot interference experiments investigating the nature of anyonic fractional quasi-particles.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances