Research ArticleIMMUNOLOGY

Critical role of synovial tissue–resident macrophage niche in joint homeostasis and suppression of chronic inflammation

See allHide authors and affiliations

Science Advances  06 Jan 2021:
Vol. 7, no. 2, eabd0515
DOI: 10.1126/sciadv.abd0515


Little is known about the mechanisms regulating the transition of circulating monocytes into pro- or anti-inflammatory macrophages in chronic inflammation. Here, we took advantage of our novel mouse model of rheumatoid arthritis, in which Flip is deleted under the control of a CD11c promoter (HUPO mice). During synovial tissue homeostasis, both monocyte-derived F4/80int and self-renewing F4/80hi tissue–resident, macrophage populations were identified. However, in HUPO mice, decreased synovial tissue–resident macrophages preceded chronic arthritis, opened a niche permitting the influx of activated monocytes, with impaired ability to differentiate into F4/80hi tissue–resident macrophages. In contrast, Flip-replete monocytes entered the vacated niche and differentiated into tissue-resident macrophages, which suppressed arthritis. Genes important in macrophage tissue residency were reduced in HUPO F4/80hi macrophages and in leukocyte-rich rheumatoid arthritis synovial tissue monocytes. Our observations demonstrate that the macrophage tissue–resident niche is necessary for suppression of chronic inflammation and may contribute to the pathogenesis of rheumatoid arthritis.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances