Research ArticleChemistry

Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature

See allHide authors and affiliations

Science Advances  06 Jan 2021:
Vol. 7, no. 2, eabd2091
DOI: 10.1126/sciadv.abd2091


The photoluminescence of metal nanoclusters is typically low, and phosphorescence emission is rare due to ultrafast free-electron dynamics and quenching by phonons. Here, we report an electronic engineering approach to achieving very high phosphorescence (quantum yield 71.3%) from a [Au@Cu14(SPhtBu)12(PPh(C2H4CN)2)6]+ nanocluster (abbreviated Au@Cu14) in non-degassed solution at room temperature. The structure of Au@Cu14 has a single-Au-atom kernel, which is encapsulated by a rigid Cu(I) complex cage. This core-shell structure leads to highly efficient singlet-to-triplet intersystem crossing and suppression of nonradiative energy loss. Unlike the phosphorescent organic materials and organometallic complexes—which require de-aerated conditions due to severe quenching by air (i.e., O2)—the phosphorescence from Au@Cu14 is much less sensitive to air, which is important for lighting and biomedical applications.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances