Research ArticleIMMUNOLOGY

Exosomal delivery of NF-κB inhibitor delays LPS-induced preterm birth and modulates fetal immune cell profile in mouse models

See allHide authors and affiliations

Science Advances  22 Jan 2021:
Vol. 7, no. 4, eabd3865
DOI: 10.1126/sciadv.abd3865

Abstract

Accumulation of immune cells and activation of the pro-inflammatory transcription factor NF-κB in feto-maternal uterine tissues is a key feature of preterm birth (PTB) pathophysiology. Reduction of the fetal inflammatory response and NF-κB activation are key strategies to minimize infection-associated PTB. Therefore, we engineered extracellular vesicles (exosomes) to contain an NF-κB inhibitor, termed super-repressor (SR) IκBα. Treatment with SR exosomes (1 × 1010 per intraperitoneal injection) after lipopolysaccharide (LPS) challenge on gestation day 15 (E15) prolonged gestation by over 24 hours (PTB ≤ E18.5) and reduced maternal inflammation (n ≥ 4). Furthermore, using a transgenic model in which fetal tissues express the red fluorescent protein tdTomato while maternal tissues do not, we report that LPS-induced PTB in mice is associated with influx of fetal innate immune cells, not maternal, into feto-maternal uterine tissues. SR packaged in exosomes provides a stable and specific intervention for reducing the inflammatory response associated with PTB.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances