Research ArticleMATERIALS SCIENCE

Discovery of multivalley Fermi surface responsible for the high thermoelectric performance in Yb14MnSb11 and Yb14MgSb11

See allHide authors and affiliations

Science Advances  20 Jan 2021:
Vol. 7, no. 4, eabe9439
DOI: 10.1126/sciadv.abe9439

Abstract

The Zintl phases, Yb14MSb11 (M = Mn, Mg, Al, Zn), are now some of the highest thermoelectric efficiency p-type materials with stability above 873 K. Yb14MnSb11 gained prominence as the first p-type thermoelectric material to double the efficiency of SiGe alloy, the heritage material in radioisotope thermoelectric generators used to power NASA’s deep space exploration. This study investigates the solid solution of Yb14Mg1−xAlxSb11 (0 ≤ x ≤ 1), which enables a full mapping of the metal-to-semiconductor transition. Using a combined theoretical and experimental approach, we show that a second, high valley degeneracy (Nv = 8) band is responsible for the groundbreaking performance of Yb14MSb11. This multiband understanding of the properties provides insight into other thermoelectric systems (La3−xTe4, SnTe, Ag9AlSe6, and Eu9CdSb9), and the model predicts that an increase in carrier concentration can lead to zT > 1.5 in Yb14MSb11 systems.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances