Solar-assisted fabrication of large-scale, patternable transparent wood

See allHide authors and affiliations

Science Advances  27 Jan 2021:
Vol. 7, no. 5, eabd7342
DOI: 10.1126/sciadv.abd7342


Transparent wood is considered a promising structural and light management material for energy-efficient engineering applications. However, the solution-based delignification process that is used to fabricate transparent wood generally consumes large amounts of chemicals and energy. Here, we report a method to produce optically transparent wood by modifying the wood’s lignin structure using a solar-assisted chemical brushing approach. This method preserves most of the lignin to act as a binder, providing a robust wood scaffold for polymer infiltration while greatly reducing the chemical and energy consumption as well as processing time. The obtained transparent wood (~1 mm in thickness) demonstrates a high transmittance (>90%), high haze (>60%), and excellent light-guiding effect over visible wavelength. Furthermore, we can achieve diverse patterns directly on wood surfaces using this approach, which endows transparent wood with excellent patternability. Combining its efficient, patternable, and scalable production, this transparent wood is a promising candidate for applications in energy-efficient buildings.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances