Research ArticleAPPLIED SCIENCES AND ENGINEERING

High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities

See allHide authors and affiliations

Science Advances  10 Feb 2021:
Vol. 7, no. 7, eabe0586
DOI: 10.1126/sciadv.abe0586

Abstract

Thermoelectric generators (TEGs) are an excellent candidate for powering wearable electronics and the “Internet of Things,” due to their capability of directly converting heat to electrical energy. Here, we report a high-performance wearable TEG with superior stretchability, self-healability, recyclability, and Lego-like reconfigurability, by combining modular thermoelectric chips, dynamic covalent polyimine, and flowable liquid-metal electrical wiring in a mechanical architecture design of “soft motherboard-rigid plugin modules.” A record-high open-circuit voltage among flexible TEGs is achieved, reaching 1 V/cm2 at a temperature difference of 95 K. Furthermore, this TEG is integrated with a wavelength-selective metamaterial film on the cold side, leading to greatly improved device performance under solar irradiation, which is critically important for wearable energy harvesting during outdoor activities. The optimal properties and design concepts of TEGs reported here can pave the way for delivering the next-generation high-performance, adaptable, customizable, durable, economical, and eco-friendly energy-harvesting devices with wide applications.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances