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New low-energy atomic structures of the thiolate-protected gold nanoparticle Au68(SH)32 are uncovered, where the
atomic positions of the Au atoms are taken from the recent single-particle transmission electron microscopy mea-
surement by Kornberg and co-workers, whereas the pattern of thiolate ligands on the gold core is attained on the
basis of the generic formulation (or rule) of the “divide and protect” concept. Four distinct low-energy isomers, Iso1
to Iso4, whose structures all satisfy the generic formulation, are predicted. Density-functional theory optimization
indicates that the four isomers are all lower in energy by 3 to 4 eV than the state-of-the-art low-energy isomer
reported. Further analysis of the optimized structures of Au68(SH)32 shows that the structure of gold core in Iso1
to Iso4 is consistent with the experiment, whereas the positions of a few Au atoms at the surface of gold core are
different. The computed optical absorption spectra of the four isomers are consistent with the measured spectrum.
Computation of catalytic properties of Au68(SH)32 toward CO oxidation suggests that the magic number cluster can
be a stand-alone nanoscale catalyst for future catalytic applications.
ade

 on S

eptem
ber 18, 2019

http://advances.sciencem
ag.org/

d from
 

INTRODUCTION

Highly stable thiolate-protected gold nanoparticles (RS-AuNPs) can
be viewed as “super atoms” for making cluster-assembled materials
whose novel properties may be exploited for applications in catalysis,
nanotechnology, or chemical biology. Determination of the structures
of RS-AuNPs in the range of 1 to 2 nm has attracted considerable re-
search interests over the past two decades (1–9). In the laboratory, the
most common approach to determine the structures of the RS-AuNPs
is x-ray crystallography. However, a critical prerequisite for using the
x-ray crystallography technology is to achieve a sizable single crystal of
the RS-AuNPs, which generally is a very challenging task. To date,
only the structures of the following RS-AuNPs have been fully resolved
by x-ray crystallography: Au102(p-MBA)44 (p-MBA: p-mercaptobenzoic
acid, SC7O2H5) (10), Au25(SCH2CH2Ph)18

− (11–13), Au38(SCH2CH2Ph)24
(14), Au36(SPh-tBu)24 (15), Au28(SPh-tBu)20 (16), Au20(SPh-tBu)16
(17), Au24±1(SAdm)16 (18), and Au18(SC6H11)14 (19). The lack of atomic
structures of many RS-AuNPs has largely hindered a comprehensive
understanding of the structure-property relationship of RS-AuNPs.
Hence, a new experimental technique that can detect the atomic struc-
tures of AuNPs without the need for crystallization of RS-AuNPs is
greatly desired.

Recently, Azubel et al. (20) have reported the atomic structure of
an RS-AuNP containing 68 Au atoms determined by the powerful
single-particle transmission electron microscopy (SP-TEM) combined
with density-functional theory (DFT) computation and absorption
spectroscopy. This SP-TEM–centered approach is transformative in
the structure determination of AuNPs because it no longer requires
producing a single crystal of RS-AuNPs. Nevertheless, thus far, SP-TEM
can only yield the positions of heavy (that is, gold) atoms. Thus, struc-
ture determination of the protection ligands requires theoretical input
from DFT computation and absorption spectroscopy measurement.
According to the atomic positions of Au determined from SP-TEM,
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the structure of Au68(SH)32 has been suggested (20) where some gold-
thiolate motifs, such as bridging thiolates and ring-like structures, are
predicted. In this communication, we present a series of new low-energy
isomers in which the pattern of thiolate ligands on the gold core is
determined according to the generic formulation (or rule) of the “divide
and protect” (D&P) concept (7, 21). DFT optimization indicates that
all the new isomers are uniformly lower in energy by 3 to 4 eV than
the state-of-the-a.rt low-energy isomer reported in (20).

We note that the D&P approach combined with the DFT compu-
tation has been proven as a viable theoretical approach to predict low-
energy or even global minimum structures of RS-AuNPs (22–29). The
D&P approach elucidates that highly stable AuNPs tend to have a
symmetric gold core covered by various levels of interfacial -RS-Au-RS-
staple motifs (7). The lengths (or levels) of staples can vary, but overall
they must obey two stoichiometry constraints for a given number of
Au atoms in the inner core and in the ligand-core interface (7, 26). The
validation of the D&P concept has been confirmed by the conceptual
breakthrough (for example, the staple motifs for the ligand structures)
being made in the total structure determination of the Au102(p-MBA)44
by Kornberg and co-workers via x-ray crystallography (10), as well as
the total structure determination of relatively small-sized clusters, such
as Au25(SCH2CH2Ph)18

− (11–13).
RESULTS AND DISCUSSION

First, on the basis of the precise positions of all Au atoms in the inner
gold core and in the interface region of the Au68NP determined from
the SP-TEM experiment (20), we construct a number of different
ligand structures with various levels of S-Au-S staple motifs, fol-
lowing the generic rule of the D&P approach (7). The generic rule
states that an RS-AuNP can be divided into several groups as il-
lustrated by [Au]a + a′[Au(SR)2]b [Au2(SR)3]c, where a, a′, b, and c
are integers. Here, [Au]a + a′ represents the gold core, which satisfies
the constraint condition that the number of “surface” Au atoms (a′) in
the gold core equals the sum of end points of the exterior motifs (2b +
2c); that is, each surface Au atom of the gold core is protected by one
end point of the staple motif. Hence, the parameters a, a′, b, and c for
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Au68(SH)32 must satisfy a + a′ + b + 2c = 68, 2b + 3c = 32, and a′ = 2b +
2c. Four initial core structures [Au]a + a′(a + a′ = 48 to 51) are examined,
and each was covered by a certain number of -HS-Au-HS- and -HS-
Au- HS-Au-HS- staple motifs: (i) [Au]24+24[Au(SR)2]4[Au2(SR)3]8, (ii)
[Au]23+26[Au(SR)2]7[Au2(SR)3]6, (iii) [Au]22+28[Au(SR)2]10[Au2(SR)3]4,
(iv) [Au]21+30[Au(SR)2]13[Au2(SR)3]2. The four newly constructed iso-
mer structures together with the previously reported isomer based on
the SP-TEM experiment (20) were optimized using the DFT method
implemented in Materials Studio Dmol3 7.0 (30, 31). The generalized
gradient approximation with the Perdew-Burke-Ernzerhof (PBE) (32)
functional and the double numeric polarized (DNP) basis set were
adopted. Lastly, the linear and quadratic synchronous transit (LST/
QST) method (33, 34) was used to locate the transition state of CO
oxidation on Au68(SH)32. The theoretical powder x-ray diffraction
(XRD) curve is calculated using the Debye formula:

I sð Þ ¼∑
i
∑
j≠i

cos q
ð1þ a cosð2qÞÞexp −

Bs2

2

� �
fi fj

sinð2pdijÞ
2pdij

where s is the diffraction vector length and q is the scattering angle,
satisfying s = 2sinq/l. l and a are determined by the experimental setup
and are set to be 0.1051967 nm and 1.01, respectively. B is the damping
factor, which reflects thermal vibrations, and is set to be 0.03 nm2. The
corresponding atomic numbers are used for the scattering factor fi. dij
is the distance between atoms i and j. The atomic distance dij used in
the calculation is taken from the optimized structure of clusters.

The optimized structures of the four isomers, Iso1 to Iso4,
classified by group divisions (i) to (iv), are shown in Fig. 1. The com-
puted total energies of Iso1 to Iso4 are 3.95, 3.28, 3.31, and 3.06 eV,
respectively, lower than the state-of-the-art low-energy isomer reported
(20). The isomer Iso1 appears to be the most stable isomer. The large
energy difference between Iso1 and the previously reported isomer
indicates that the ligand patterns that can meet the generic formulation
of the D&P approach are energetically much more favorable. In Iso1 to
Iso4, the 68 gold atoms can be grouped into an Au15 core with an Au
atom in the center. Figure 2 displays two orthogonal views of the Au15
core in Iso1 to Iso4 and the Au15 core taken from the previously re-
ported experimental isomer. In addition, the root mean square devi-
ation (RMSD) values as a measure of deviation of the Au15 core in
Iso1 to Iso4 from the experimental structure are presented in Table

1. The small RMSD values (about 0.3 Å)
indicate that the overall structures of Au15
inner cores in Iso1 to Iso4 are consistent
with the experimental one. Moreover, the
structural distortion of the Au15 core in all
five isomers can be recognized in Fig. 2.
The slight distortion is probably induced
by the different interfacial -RS-Au-RS- sta-
ple structures. As such, the core structure
of Au68NP is slightly distorted rather
than being highly symmetric.

The fcc-like gold frameworks in Iso1
to Iso4 were singled out in Fig. 3. Here, to
illustrate the fcc-like structure of gold frame-
works more clearly, a common neighbor
analysis (CNA) (35) was undertaken.
Detailed information of CNA is given
in table S1. The distinct CNA signatures
Xu, Gao, Zeng Sci. Adv. 2015;1:e1400211 24 April 2015
demonstrate that the inner gold core structures of Iso1 to Iso4 exhibit
the fcc (100) and (111) surfaces, consistent with the SP-TEM experiment.
The analysis of the Au15 core and the fcc-like framework suggests that
the interior structures of Iso1 to Iso4 are consistent with the SP-TEM
experiment. The RMSD values (about 0.7 Å) for the Au68 structures of
Iso1 to Iso4, however, become larger after including the surface Au
atoms, as shown in Table 1, suggesting that the positions of the sur-
face Au atoms that bind with the end point of the exterior motifs
differ from those in the reported isomer. We note that in the SP-
TEM experiment, a minimal electron dose was used (20). Could the
Fig. 1. Optimized structures of the four isomers Iso1 to Iso4 of Au68(SH)32.

The Au and S atoms are in gold and red, respectively. The H atoms are
not shown.
Fig. 2. Two orthogonal views of the 15 Au atoms in the core of the reported isomer from the SP-

TEM experiment of Au68 and in the cores of Iso1 to Iso4. The Au atom in the center is in red.
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TEM electron beam alter the positions of several surface Au atoms
during the measurement? This question can be addressed through fur-
ther experimental investigation using known RS-AuNP structures re-
solved from x-ray crystallography as a benchmark.

Computed optical absorption spectra of Iso1 to Iso4, using the
time-dependent DFT (TD-DFT) method, are shown in Fig. 4. As a
comparison, both experimental and theoretical spectra of the previ-
ously reported isomer (20) are also included in Fig. 4. The locations
of four prominent absorption peaks (a, b, c, and d) show that the com-
puted optical absorption spectra of Iso1 to Iso4 are largely consistent
with the experimental spectrum. Additionally, the simulated XRD
curves of Iso1 to Iso4 and the experimental cluster (20) are shown
in Fig. 5. Overall, Iso1 results in the best agreement with the experi-
mental curve. For Iso2 to Iso4, their first, second, and third peaks are
slightly shifted compared to the corresponding experimental peaks.
Further analysis of the molecular orbital (MO) levels and the cor-
responding atomic orbital components in each MO of Iso1 to Iso4 are
presented in figs. S1 to S4. We find that the strong absorption peaks b
to d are mainly contributed by the core [Au]a + a′ (a + a′ = 48 to 51).
Overall, the positions of the major absorption peaks of these five iso-
mers are more or less similar to one another because they have similar
Xu, Gao, Zeng Sci. Adv. 2015;1:e1400211 24 April 2015
core structures. However, as shown in Fig. 4, the shape of the com-
puted absorption curves of Iso1 to Iso4 are different, suggesting that
the overall shape of the optical absorption spectrum of Au68(SH)32 is
sensitive to the isomer structure.

Finally, we examine catalytic properties of Au68(SH)32 by using the
CO oxidation as a probe. The computed catalytic reaction pathway for
the CO oxidation on the Iso1 cluster is shown in Fig. 6. Because all
gold atoms in the clusters are protected by the thiolate groups, several
surface staple motifs of Iso1 are removed to make the catalytic reaction,
as indicated in previous studies (36, 37). As shown in Fig. 6, the CO and
O2 molecules can be favorably coadsorbed on two neighboring low-
coordinated Au atoms, with the coadsorption energy of CO2 and O2

being about −1.24 eV. Upon the coadsorption of CO and O2, the
two molecules can move closer while the O-O bond length is elongated.
Fig. 3. The fcc-like frameworks of Au68 in Iso1 to Iso4. The 15 Au

atoms in the core are in gold, and the other Au atoms are in red.
Table 1. RMSD values as a measure of the deviation of the Au15 core
and Au68 in Iso1 to Iso4 from the experimental structure. The unit is
in angstrom.
Iso1
 Iso2
 Iso3
 o4
Au15
 0.28
 0.28
 0.33
 .32
Au68
 0.70
 0.71
 0.69
 .69
Fig. 5. Simulated XRD curves of Iso1 to Iso4 and the experimental

Au68(SH)32 cluster.
Fig. 4. Optical absorption spectra of Au68(SH)32. Top row: The experi-

mental (wine and olive) curves and the theoretical (black) curve plotted by
taking the data from Ref. 20. Rows 2 to 5: Computed optical absorption
spectra of Iso1 to Iso4. The red curve denotes the vibrational frequency
analysis based on the individual vibrational intensities (red vertical lines).
The blue curve denotes spectra from TD-DFT computation of the individual
optical transitions. In all five rows, the locations of four prominent absorp-
tion peaks (a, b, c, and d), from either experiment or theory, are displayed.
3 of 5
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In the first step, a relatively low-energy barrier of 0.18 eV (TS1 in Fig. 6)
can be overcome while the two molecular species arrive at a bridge-like
metastable intermediate state characterized by the O-C-O-O species,
with the O–O bond length being 1.43 Å. In the second step, the O–
O bond length is further elongated to 1.85 Å while CO fully grasps
an O atom of O2 to form a CO2 molecule. Lastly, CO2 desorbs with
cleaving the O–O bond, leaving the other O atom adsorbed on the gold
cluster. The second step (TS2 in Fig. 6) is the rate-determining step that
requires overcoming a reaction barrier of 0.68 eV. These reaction
barriers are comparable to those of typical nanogold catalysts (38–40),
indicating that the Au68 cluster can be a stand-alone nanoscale catalyst
for future applications.
em
ber 18, 2019
CONCLUSION

We have presented a series of new low-energy isomer structures of
Au68(SH)32 determined from the generic formulation of the D&P ap-
proach. The consistency in the interior structure of Au68 and the peak
locations of the optical absorption spectra between the new isomers
and the isomer reported from the SP-TEM experiment suggests that
these isomers, Iso1 in particular, are promising candidates for the most
stable atomic structure of Au68(SH)32. Further computation of catalytic
properties of Au68(SH)32 toward CO oxidation suggests that this magic
number cluster can be a stand-alone nanoscale catalyst for future ap-
plications. Confirmation of the predicted staple motif–based atomic
structure of Au68(SH)32 must await future benchmark experiments,
for example, using known staple motif–based RS-AuNPs, such as
Au102(p-MBA)44, as a benchmark in future SP-TEM experiment.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/
full/1/3/e1400211/DC1
Fig. S1. MO energy level diagram for Iso1, with the three peaks b, c, and d in Fig. 4 being
assigned to various excitation modes.
Xu, Gao, Zeng Sci. Adv. 2015;1:e1400211 24 April 2015
Fig. S2. MO energy level diagram for Iso2, with the three peaks b, c, and d in Fig. 4 being
assigned to various excitation modes.
Fig. S3. MO energy level diagram for Iso3, with the three peaks b, c, and d in Fig. 4 being
assigned to various excitation modes.
Fig. S4. MO energy level diagram for Iso4, with the three peaks b, c, and d in Fig. 4 being
assigned to various excitation modes.
Table S1. Bond CNA signatures for Iso1 to Iso4.
Coordinate files
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