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Polya’s bees: A model of decentralized
decision-making
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o

How do social systems make decisions with no single individual in control? We observe that a variety of natural
systems, including colonies of ants and bees and perhaps even neurons in the human brain, make decentralized
decisions using common processes involving information search with positive feedback and consensus choice
through quorum sensing. We model this process with an urn scheme that runs until hitting a threshold, and we
characterize an inherent tradeoff between the speed and the accuracy of a decision. The proposed common mech-
anism provides a robust and effective means by which a decentralized system can navigate the speed-accuracy
tradeoff and make reasonably good, quick decisions in a variety of environments. Additionally, consensus choice
exhibits systemic risk aversion even while individuals are idiosyncratically risk-neutral. This too is adaptive. The
model illustrates how natural systems make decentralized decisions, illuminating a mechanism that engineers of
social and artificial systems could imitate.
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INTRODUCTION

Ants and bees appear to rely on decentralized decision-making for crit-
ical choices. For example, in choosing a new nest site—a decision that
has huge implications for the survival of the group—decisions must be
made without central control and with no single individual evaluating
the total available information (1) or any one individual making direct
comparisons of the available options (2–5). Although individual agents
follow simple rules that allow them to uncover very limited and local
information, the colony as a whole must efficiently integrate the result-
ing flow of information into a high-quality, final decision (6–10).

Consider how a swarm of honey bees, Apis mellifera, chooses a new
hive location (8–14). When a swarm abandons the old hive, it tem-
porarily gathers at a tenuous location. About 5% of the bees are scouts,
and after exploring the surrounding area for possible hive sites, a scout
may perform a waggle dance that indicates the location of the site it
discovered (15, 16). The likelihood of performing a waggle dance, and
its duration, depends on the quality of the site that was investigated
(9, 13, 14). The waggle dances serve to recruit additional scouts to fur-
ther investigate the “advertised” site. The longer the dance, the more
likely that the new scouts will investigate the site and bring back inde-
pendent evaluations. Over time, positive feedback loops are generated
(8, 13), and once the number of scout bees at a particular site reaches a
quorum threshold (of about 30 to 40 bees), those scouts return to the
swarm and lead it to the new site (12).

Leptothorax (Temnothorax) albipennis ants choosing a new nest site
behave similarly (1, 6, 17). When a scout finds a higher-quality site, it
quickly returns to the old nest site and recruits a nestmate by tandem
running, a tedious process that entails the scout teaching the recruit
the route to the new site (18–21). The speed of recruitment is tied to
the quality of the site (1, 3), with better sites inducing quicker re-
sponses. As before, positive feedback arises when recruits become re-
cruiters. Finally, when the number of ants at the new site reaches a
quorum threshold, the recruiting ants switch from tandem running
to the much faster process of carrying their remaining nestmates from
the old to the new site (22).
Other social organisms make collective decisions with mechanisms
reminiscent of those of ants and bees. Social spiders coordinate their
emigrations to a new nest (23) with silk draglines, allowing positive
reinforcement of existing routes much like the pheromone trails of
ants (23–25). Cockroaches are more likely to remain in shelters when
other cockroaches are nearby, leading to a collective choice of a single
home (26, 27). Even bacteria share information and detect quorums,
allowing for collective decisions regarding sporulation, virulence, and
gene exchange (28).

There is some speculation that primate brains use a similar decen-
tralized decision mechanism. No single neuron is solely responsible
for the brain’s decision. In a visual discrimination task, for example, a
subset of specialized neurons integrates sensory signals from other neu-
rons and allows the brain to make a decision to trigger other neurons
to initiate a motor response (29). Complex, decentralized information
processing can be achieved with a cell assembly, a recurrent circuit of
neurons that becomes active when stimulation spreads with positive
feedback (30, 31). Neurons are generally understood to accumulate
information and fire when the stimulus hits a threshold to imple-
ment a decision (32–34). In this regard, the primate brain may function
analogously to a colony of social insects (35–37).

Similar mechanisms may even be at work in large-scale social pro-
cesses (38). For example, consider the choice of a personal MP3 player.
Consumers who purchase such players “advertise” them when they use
them (particularly if the players have some distinctive feature, for ex-
ample, white ear buds). Moreover, consumers who enjoy their players
are more likely to use them. Someone new to the MP3 market may ob-
serve the players that others use and purchase on the basis of these ob-
servations. This kind of direct marketing is often a major driver of
consumer demand for new products, especially when competing brands
have not yet established distinct reputations (39). At some point in the
evolution of the market, however, a critical mass of consumers may
choose the same product and fundamentally change the market dy-
namics (say, by adopting a particular technological innovation, by fuel-
ing economies of scale in the production process, or by enticing suppliers
or producers of complements to enter into exclusive agreements) so
that only the leading product can survive in the market (40, 41). Sim-
ilarly, people collaborating to make a group decision also tend to share
information that favors options that already have popular support
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while hesitating to share information that favors unpopular options
(42), and they commonly reach a consensus choice through plurality
voting (43).

Any decision mechanism must trade off exploring new options ver-
sus exploiting the best option known to date. Although further explo-
ration helps identify superior options, it comes at the cost of not acting
on a known option. Thus, too much exploration may lead to indeci-
siveness and thus harm fitness, whereas too little may imply the ac-
ceptance of suboptimal choices. Given the inherent tradeoff between
speed and accuracy, the diffusionmodel of decision-making (34)—which
does not incorporate positive feedback in the accumulation of evidence—
is efficient for binary choice, but it requires the agents to compare the
options or at least to inhibit activity for competing options (35, 44).
When this is not possible, positive feedback in the process of explo-
ration may prove useful for making reasonably good, quick decentral-
ized decisions.

The model
We present a model of a two-part process for decentralized decision-
making, involving search and recruitment with positive feedback in
the first phase and quorum detection to trigger a consensus choice (with-
out centralized processing) in the second phase. First, individual agents
randomly search over a set of feasible options, biased by the quality of
the options revealed during previous searches. Then, a final consen-
sus choice is triggered when a quorum of agents investigating any one
particular option forms. [A consensus choice is a choice that the entire
system must abide (45), but of course, it is not necessarily a unanimous
choice via “consensus sensing” (10).] We capture this process with an
urn scheme that runs until hitting a threshold.

Search and recruitment
Agents (scouts) explore one of many possible options and then return
home to recruit additional agents to further explore that option. A
Poisson process for each agent governs its trips home, and the recruit-
ment of additional scouts on each trip depends on the quality of the
explored option.

We assume that there are C possible options and that some num-
ber of agents wt

c investigate each c ∈ C at any time t. We refer to wt
c as

the weight on c at time t. All weights are initially set to the same, pos-
itive value w0 and then accumulate over time. Each agent is equally
likely to return home at any time, and when it does, it recruits addi-
tional agents to join it and further explore the same option. The chance
of an agent recruiting for option c at time t is simply proportional to
the weight wt

c. Each option has a set of immutable attributes that defines
its quality, and the extent of recruitment for c depends on its quality.
The agents investigating c will recruit vc additional agents to continue
exploring it when they return. We think of the number of recruits per
return trip home, vc, as an ordinal measure of the quality of c.

Quorum detection
The search process above generates a distribution of agents investi-
gating each possible option at any given time. Given the decentralized
nature of these systems, there must be some feasible trigger that ends
the search process and finalizes the consensus choice. One possible
solution to this problem would be to have the search probabilities con-
verge to zero or one—that is, have all of the probability concentrated
on a single option. Forcing such a unanimous decision on the system
is problematic, because it may form extremely slowly, perhaps leading
Golman, Hagmann, Miller Sci. Adv. 2015;1:e1500253 18 September 2015
to a serious loss of fitness. Moreover, we have empirical evidence, at
least in the case of honey bees (46, 47), ants (6), and stickleback fish
(48, 49), that unanimity is not what triggers a consensus choice. Instead,
a final choice is made once the number of agents in favor of a particu-
lar option reaches a quorum (45, 50).

On the basis of the above arguments, we incorporate into our model
a quorum threshold, t, that triggers—as the final decision—any option
that is being investigated by at least that number of agents. This thresh-
old is effectively the finish line in the race for each option to accumu-
late weight. The decision is determined by the first passage of wt

c ≥ t.
The level of the quorum threshold has important implications for the
decisions that arise in the system. If the threshold is set too high, then
a quorum may not be reached for a long time, resulting in prolonged
inaction. If the threshold is set too low, then a quorummight be achieved
for a relatively low-quality option. Thus, the optimal quorum threshold
depends on a tradeoff between speed and accuracy in the decision-making
process. From a normative standpoint, a good threshold allows the sys-
tem to withstand various transients in the probability distribution while
still remaining responsive to the acquired information in a timely manner.

The urn scheme
We use a simple (Polya) urn process to model this decision mecha-
nism. This process is easy to visualize. Assign to each of the C options
a unique color, and place w0 balls of each color into an urn. The num-
ber of balls of a particular color in the urn corresponds to the number
of agents investigating the associated option. Each ball has the same
rate at which it may be randomly drawn from the urn. When a ball
with color c is drawn, it is immediately placed back into the urn along
with vc identically colored balls. This process continues until a thresh-
old number of balls t is reached. We assume that the supply of balls
available to enter the urn is large relative to the quorum threshold, be-
cause the number of scouts in a swarm of bees or a colony of ants is
typically much larger than the number required to achieve a quorum.

Analytical results
Our analysis aims to characterize the behavior of this decision process,
that is, to determine the choice probabilities and the (distribution of)
decision times. First, we must understand the accumulation process.
We precisely characterize how the composition of balls in the urn
evolves over time. Lemma 3.1 of (51) gives us the distribution of balls
of each color at any time t (in the absence of a threshold for stopping
the process).

Lemma 1. The moment-generating function ϕcðt; sÞ ¼ E½es wt
c � is

given by ϕc t; sð Þ ¼ evcðs−tÞ
evcðs−tÞ − evcs þ 1

� �
w0
vc (where s is the argument of

the moment-generating function).
Proof. We can describe this Polya process with a diagonal C × C

matrix with the vc values along the diagonal and 0’s elsewhere. The
evolution of the number of balls of a given color is independent of
the evolution of other colors (until the threshold is hit). Thus, Lemma
3.1 of (51) directly applies.

In principle, this moment-generating function fully characterizes the
distribution of weights, wt

c, where s is the argument of the moment-
generating function. In practice, however, calculating the likelihood of
hitting a threshold t at a given time t is complicated.

An asymptotic result is simple to obtain. Suppose the threshold t is
infinite so that the Polya process can run forever. Eventually, almost
all of the weight converges on the choice with the highest quality.
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Theorem 1. If there is a unique optimal choice c* = argmaxc vc, then:

lim
t→V

wt
c

∑jw
t
j

¼ 1 if c ¼ c*
0 otherwise:

�

Proof. As t→V;
wt
c

evct
→
D

Gamma
w0

vc
; vc

� �
[see Theorem 3.1

of (51)].
In the infinite time limit, we recover the unanimity decision rule,

and the probability of a mistake (that is, selecting an option other than
c*) vanishes.

Although the asymptotic properties of the urn process are inform-
ative, feasible decentralized systems must make decisions in finite time
and require a finite threshold. For any given threshold t, we would like
to describe the probability pc(t) of selecting each possible choice c as
well as the waiting time T(t) until the decision is made.

We can characterize the waiting time Tc(t) until the number of
agents exploring option c would hit the threshold t (independent of
recruitment for other options). Let l denote the intensity of the Poisson
process for each agent’s return home.

Lemma 2. The waiting time Tc(t) has the Hypoexponential
(l0, l1,…, ln) distribution with:

li ¼ ðw0 þ ivcÞl for all i; ð1Þ
and

w0 þ nvc < t ≤ w0 þ ðnþ 1Þvc; ð2Þ
which implies

n ¼ ceiling
t − w0

vc

� �
− 1: ð3Þ

Proof. We have an Exponential(l) distribution for the time until a
given agent returns home, and thus, at any time t, we have an Expo-
nential ðwt

clÞ distribution for the time until additional agents are re-
cruited to explore option c. Thus, the waiting time Tc(t) until the
number of agents exploring option c hits the threshold t is the sum
of independent, exponentially distributed variables with arithmetically
increasing parameters.

The hypoexponential density function is f ðtÞ ¼ ∑n
i¼0Ci;nlie−li t

with Ci;n ¼∏j≠i
lj

lj − li
: Taking n and l1,…,ln to be functions of c

and t (given by Eqs. 1 and 3), this gives us the probability density
function fc,t(t) for each Tc(t).

Modeling the decision process in terms of accumulation to a fixed
threshold, we can think of −Tc(t) as a stochastic utility for each al-
ternative c. The system selects the alternative that maximizes this util-
ity. [Of course, because this process is stochastic, maximizing this utility
does not necessarily align with maximizing quality. The design of the
system reflects dual objectives of aligning utility with quality (to more
often choose higher-quality options) and maximizing this utility (to
make quicker decisions).] The density functions for the Tc(t) variables
thus determine the quantities of interest in the system: the probability
pc(t) of selecting each possible choice c as well as the waiting time T(t)
until the decision is made.

Theorem 2. The waiting time T(t) distribution and the choice
probabilities pc(t) are determined by the Tc(t) distributions given by
Lemma 2. The time until a decision is made by the decentralized system
Golman, Hagmann, Miller Sci. Adv. 2015;1:e1500253 18 September 2015
is T(t) = minc Tc(t). The probability that the eventual decision is for
choice c is pc(t) = Pr[Tc(t) < minc′≠cTc′(t)].

Proof. The urn process runs until the first time that balls of any
one color accumulate to the threshold, and the probability of selecting
any given choice is simply the probability that balls of the correspond-
ing color reach that threshold first.

Theorem 2 characterizes the (distribution of) time(s) it takes to
make a decision and the choice probabilities as functions of the quo-
rum threshold, given any menu of possible choices. We can, of course,
calculate the minimum of a set of random variables, as the theorem
requires us to do, but there is no simple, closed-form expression for
this. Given the lack of a closed-form solution, we use computation to
gain additional insight about this process.

Computational results
To explore the effects of parameter variation and the introduction of
noise into the process, we run computational experiments of the pro-
posed mechanism. Although the process described above runs in con-
tinuous time, we identify discrete time steps every time an agent returns
home to recruit (that is, every time a ball is drawn from the urn). Let
the index m count the number of agents that have returned home for a
visit, and denote the time when the mth agent returns home as tm.
When there are w ¼ ∑cw

tm
c agents exploring the set of possible options,

the expected time until the next agent returns home is
1

wl
. Setting l = 1,

which normalizes the units of time, we have:

E tmþ1 − tmjw
� � ¼ 1

w
:

We generally set w0 = 1 for simplicity. Each computation reports
the average time until decision T(t) and the probability of a mistake
p∼c* (t) = 1 − pc* (t) as a function of the quorum threshold t.

We see the tradeoff between speed and accuracy across varying
quorum thresholds by viewing the expected time until decision and
the mistake probability as parametric functions of the threshold.
Allowing the threshold to vary, we have a Pareto-efficient frontier
along which the speed of the decision mechanism cannot be improved
without sacrificing accuracy (and vice versa).

Parameter variation
Increasing the number of possible options C makes for a less accurate
decision, but a slightly quicker one as well. (This is shown in the ap-
pendix in fig. S1.) More options provide more opportunities for sub-
optimal options to accumulate a quorum, leading to more mistakes
and less decision time. But then, to reach the same level of accuracy,
the system needs a higher threshold, and this increases the time required
to make the decision (as shown in Fig. 1). Intuitively, more possible
options make for a more difficult decision.

Increasing the quality of the optimal choice, vc*, makes the decision
easier (as shown in the left plot in Fig. 2). (These Pareto frontiers are de-
rived from simulations shown in figs. S2 and S3.) As the quality of the op-
timal choice increases, the decision can be made faster and with less chance
of error. Recruitment becomes more effective, so the agents accumulate
at this option more quickly and the system achieves the quorum sooner.

Increasing the quality of a suboptimal choice, however, does not
have such straightforward consequences. It has three effects: (i) it
makes the decision process quicker, (ii) it increases the probability of
selecting the suboptimal choice, and (iii) it lowers the cost of making
3 of 7
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a suboptimal decision. Thus, the net impact on the ultimate quality of
the decision could go in either direction. The right graph in Fig. 2
shows that increasing the quality of a suboptimal option hurts the ac-
curacy of the decision that can be made within a given time.

Noise and risk aversion
Assuming that each option has some absolute quality helped keep our
model analytically tractable, but we can extend the model by allowing the
quality, vc, to be a random variable. At a conceptual level, we might think
of the process of search as inherently noisy, because there could be natural
variation in the agents’ perceptions of quality. Alternatively, we might
think of the process of recruitment as inherently noisy, with variation in the
ability of agents to recruit other agents. In either case, the formal treatment
is the same.

One potential source of noise is in the perception of the quality of
options when sampled across multiple attributes. If the individual agents
cannot investigate all attributes, they may produce a noisy estimate of
overall quality by sampling a single (or a few) attribute(s).We can associate
random sampling of attributes with noise in the overall quality of the op-
tion. [If agents were to specialize in sampling particular attributes andwere
alsomore likely to recruit their own type of specialist, then the dynamics of
the decisionmechanismwould bemore complicated. Natural systems (for
example, a swarm of bees or a colony of ants) do not (to our knowledge)
exhibit such behavior, but it could perhaps arise in human-engineered
systems.] The decision mechanism is generally robust to noise (see fig.
S4), but capable of distinguishingwhen one option has noisier quality than
another. We can think of an option with noisier quality as riskier.
Golman, Hagmann, Miller Sci. Adv. 2015;1:e1500253 18 September 2015

 on O
ctober 30, 2020

s.sciencem
ag.org/
We compare the attractiveness of risky and safe options (that is,
options with the same expected quality but more or less noise, respec-
tively) in Fig. 3, which shows that (for a fixed quorum threshold of 100)
the safe option (with vSafe = 2) is more likely to be selected than a risky

option with vRisky ¼ 1;R − 2
R − 1;R;

1
R − 1

� �� �
; and it is increasingly

preferred to even riskier options (that is, as R increases). There is noth-
ing special about the threshold of 100, and the result holds for al-
most all thresholds (possible exceptions being low thresholds that
can be reached by a single draw of the risky option, due to recruit-
ment having discrete increments), as shown in fig. S5. The effect per-
sists with high thresholds because noise in the process of search and
recruitment does not inevitably balance out; rather, positive feedback
in the process makes it more difficult for the risky option to overcome
early indications of low quality. [We prove in the appendix (Proposi-
tion 1) that the probability of selecting a safe option with quality vSafe =

1 over a risky option with quality vRisky ¼ 0;
R − 1

R
;R;

1

R

� �
; for a

quorum threshold of t = R + 1 is R B R; 1þ 1
R

� �
(where B is the

Euler beta function), which is an increasing function graphed in fig.
S6.] Thus, the decision mechanism exhibits a systematic degree of
risk aversion.

Risk aversion is defined for deterministic choice models as a pref-
erence against mean-preserving spreads and is conventionally repre-
sented with concave utility functions. However, risk aversion can get
more complicated for stochastic choice models. A strong condition of
risk aversion with stochastic choice would require the entire distribu-
tion of the stochastic utility to shift downward for mean-preserving
spreads. We do not obtain such universal risk aversion, noting occa-
sional exceptions to this general pattern of preferences at low thresh-
olds (see fig. S5). Instead, we define risk aversion in our context as
occurring if a mean-preserving spread of an alternative’s quality de-
creases the probability of choosing that alternative, for sufficiently high
thresholds. We observe this in our computational results.

The intuition behind the emergence of risk aversion is that the pos-
itive feedback in the search and recruitment process allows small ad-
vantages to be self-reinforcing, so an option that consistently appears
relatively good fares better than one that occasionally appears either
great or lackluster. In a world with natural selection, where an entire
population can be decimated if a risky choice turns out badly, it
may well be adaptive to use a decision mechanism that inherently
favors safer choices (52). Moreover, our mechanism permits the sys-
tem’s consensus choice to be risk-averse even when individual agents
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Fig. 2. Pareto frontiers of mistake probability and expected waiting time with varying choice quality. Left: Varying optimal choice quality.
There are C = 2 possible choices, and the quality of the suboptimal choice is v∼c* = 1. Right: Varying suboptimal choice quality. There are C = 2

possible choices, and the quality of the optimal choice is vc* = 4.
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Fig. 1. Pareto frontiers of mistake probability and expected waiting
time with 2 and 4 options. The optimal choice has quality v = 2, whereas
c*

the suboptimal choices have quality vc = 1 for all c ≠ c*. As an artifact of
specifying recruitment (that is, choice quality) so precisely, there are thresh-
olds for which the decision is both slower and less accurate than for a
threshold one unit smaller. The corresponding points on the graph are
clearly not on the Pareto frontier, but they are shown for completeness.
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are risk-neutral. Thus, the system could simultaneously be risk-averse
for systemic risk and risk-neutral for idiosyncratic risk (when con-
sensus choice is not required), which would be evolutionarily adapt-
ive (53).

Discovery and disruption
We can enrich our model by allowing agents to discover the possible
options on their own and to be disrupted from search and recruitment
by outside forces. We assume that a Poisson process, with intensity bc,
governs the discovery of each possible option c and that each agent
has an exponentially distributed lifetime for search and recruitment
with hazard rate d of disruption. With discovery, a natural initial con-
dition is w0 = 0, that is, the urn is initially empty and agents need to
discover an option for recruitment to begin. The index m for discrete
time steps now must count all events, that is, every time an agent
discovers a possible choice or falls prey to disruption, as well as when
an agent returns home to recruit. The expected time step becomes:

E tmþ1 − tmjw
� � ¼ 1

wðlþ dÞ þ∑cbc
:

Figure 4 shows that decision speed and accuracy are fairly robust
to the introduction of option discovery and disruption of search and
recruitment. Increasing the rate of discovery (for all options) speeds
up the decision and reduces mistakes by limiting the sensitivity to ini-
tial advantage, making it easier for the optimal choice to catch up when
it gets discovered later on. Increasing the rate of recruitment also speeds
up the decision, but can lead to more mistakes by reinforcing initial
advantages (that is, when a suboptimal option is discovered first).
Increasing the rate of disruption slows down the decision, yet it coun-
teracts initial advantages, allowing the optimal option more time to get
ahead through stronger recruitment. (Figure S7 shows the distinct
effects on mistake probability and expected time until decision.) In all
cases, the quorum threshold could be adjusted to efficiently navigate
the new speed versus accuracy tradeoff. The net effects, which are
shown in Fig. 4, are that increasing the rate of disruption harms the
decision, whereas increasing the rate of discovery or the rate of recruit-
ment improves the decision. Thus, although recruitment introduces
positive feedback that can reinforce suboptimal options, it speeds up
the decision process enough that at higher thresholds the system can
make better, quicker decisions. On the other hand, disruption slows
down the decision process so much that despite the opportunities for
Golman, Hagmann, Miller Sci. Adv. 2015;1:e1500253 18 September 2015
error correction (by effectively allowing agents to occasionally change
their minds), at lower thresholds the system makes slower, worse
decisions. The error-correcting feature of disruption could nonetheless
be helpful if, contrary to our assumption, a system were constrained to
a small number of agents and thus forced to have a low threshold.
DISCUSSION

From ants (54) to bees (46) to neurons in the brain (55), a variety of
systems productively use decentralized decision mechanisms. Our
general notion of decentralized decision-making assumes that no
single agent has direct access to information across all of the choices
or the ability to make, and communicate, a final decision. Although each
agent does have the ability to make limited judgments and decisions, it is
the system as a whole that must integrate these activities into a final
choice and action. Our model of decentralized decision-making ab-
stracts beyond any one of these systems and aims to provide a deeper
understanding of how such mechanisms behave.

A Polya urn scheme running until it hits a finite threshold parsi-
moniously captures a decentralized decision mechanism in which
agents gather local information about possible options through search
and recruitment with positive feedback, and the system then makes a
consensus choice when it detects a quorum in support of a particular
option. In this approach, we add to the literature that uses the Polya
urn process to model positive feedback in firm growth (56, 57), tech-
nology lock-in (40, 58), the common law legal system (59), the evolu-
tion of social and political institutions (60, 61), and the design of
medical trials (62).
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Fig. 3. Probability of selecting the safe option over a risky option with
the same expected quality for a fixed quorum threshold of 100. There

are C = 2 options. The safe option has quality vSafe = 2. The riskiness of
the risky option is indexed by the potential reward R such that the quality

of the risky option is vRisky ¼ 1;
R − 2

R − 1
;R;

1

R − 1

� �
; that is, it has expected

quality 2 and variance R − 2.
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Fig. 4. Pareto frontiers of mistake probability and expected waiting
time with varying rates of discovery, recruitment, and disruption.

There are C = 2 options. The optimal choice has quality vc* = 2, and the
suboptimal choice has quality v∼c* = 1. The rate of discovery bc is the same
for both options, and it varies across the columns. The agents’ hazard rate
of disruption d varies across the rows. The agents’ rate of recruitment l
varies within each panel.
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Analytically, we characterized the waiting time to make a decision
and the choice probabilities for any quorum threshold, and we iden-
tified an inevitable tradeoff between the speed and the accuracy of the
decision. Numerical experiments showed that the system’s ability to
make reasonably good, quick decisions is robust to parameter varia-
tion, noise, and disruption. Moreover, the computation reveals that
the decision mechanism naturally exhibits systemic risk aversion.

Additional assumptions about the cost of waiting and the relative
values of possible options would be necessary to evaluate the exact
tradeoff between a decision’s speed and accuracy. At the extremes, an
infinite quorum threshold requires infinite waiting time, and a mini-
mal quorum threshold corresponds to uniformly random choice, so
the optimal threshold lies in between. The optimal threshold depends
on the particular decision context, and there is some evidence that
natural systems tune their thresholds in response to the decision con-
text to make better tradeoffs between speed and accuracy (17, 63).

The fact that many natural systems independently evolved similar
decentralized decision mechanisms suggests that such mechanisms
may represent a robust solution to the general problem of making
good, group-level decisions in the absence of centralized control. In-
deed, we suspect that evolutionary forces are sufficient to form such
natural systems and, over evolutionary time, tune their performance.
The decentralized decision mechanism we described here may also
prove useful in the design of new social and artificial systems. Novel
applications range from improving human organizations to applying
such techniques to artificial systems like algorithmic search and the
control of swarms of robots or networked computers.
 on O
ctober 30, 2020

s.sciencem
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MATERIALS AND METHODS

We used a Monte Carlo method based on 100,000 trials of a Polya urn
process with a range of parameters using code written in Python 3.3.
The results are confirmed with numeric calculations of the exact dis-
tributions in those cases where such computations are possible (typi-
cally, thresholds up to about 20). The standard errors are negligibly
small for both the mistake probability (no greater than 1% of the
estimate for any threshold) and the expected time (not exceeding
0.1% of the estimate). The simulation source code, along with the data
used to produce our figures, is available at http://files.dhagmann.com/
papers/polyaBees.zip.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/1/8/e1500253/DC1
Fig. S1. Mistake probability and expected waiting time as a function of the quorum threshold
with 2 and 4 possible options.
Fig. S2. Mistake probability and expected waiting time as a function of the quorum threshold,
varying the quality of the optimal choice.
Fig. S3. Mistake probability and expected waiting time as a function of the quorum threshold,
varying the quality of the suboptimal choice.
Fig. S4. Mistake probability and expected waiting time as a function of the quorum threshold
in noisy and noiseless environments.
Fig. S5. Probability of selecting a safe option with quality vSafe = 2 over a risky one with quality
vRisky = {1,50%;3,50%}, as a function of the quorum threshold.
Fig. S6. Probability of selecting a safe option with quality vSafe = 1 over a risky one with quality

vRisky ¼ 0;
R − 1

R
;R;

1

R

� �
; for a quorum threshold of t = R + 1.

Fig. S7. Mistake probability and expected waiting time as a function of the quorum threshold,
with varying rates of discovery, recruitment, and disruption.
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