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FOXA1 defines cancer cell specificity
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Benjamin Skerry, Zhaoyu Li†
D
o

A transcription factor functions differentially and/or identically in multiple cell types. However, the mechanism for
cell-specific regulation of a transcription factor remains to be elucidated. We address how a single transcription
factor, forkhead box protein A1 (FOXA1), forms cell-specific genomic signatures and differentially regulates gene
expression in four human cancer cell lines (HepG2, LNCaP, MCF7, and T47D). FOXA1 is a pioneer transcription factor
in organogenesis and cancer progression. Genomewide mapping of FOXA1 by chromatin immunoprecipitation
sequencing annotates that target genes associated with FOXA1 binding are mostly common to these cancer
cells. However, most of the functional FOXA1 target genes are specific to each cancer cell type. Further investiga-
tions using CRISPR-Cas9 genome editing technology indicate that cell-specific FOXA1 regulation is attributable
to unique FOXA1 binding, genetic variations, and/or potential epigenetic regulation. Thus, FOXA1 controls the
specificity of cancer cell types. We raise a “flower-blooming” hypothesis for cell-specific transcriptional regulation
based on these observations.
w

 on June 17

http://advances.sciencem
ag.org/

nloaded from
 

INTRODUCTION

Tissue-specific or cell-specific transcriptional regulation has been
found in almost all species (1). Organogenesis and neoplastic
transformation are tightly controlled by tissue-specific/cell-specific
transcriptional regulation. Studies of cell-specific transcriptional reg-
ulation have focused on global patterns of transcriptional machinery
in different tissues and cell types at certain developmental stages or
during cancer initiation and progression (2). Whether a single tran-
scription factor has common and/or differential regulation—or how
a transcription factor regulates differentially—in multiple types of cells
is a fundamental but less understood question in genetics. Forkhead
box protein A1 (FOXA1) is a pioneer transcription factor that reg-
ulates organogenesis and cancer progression in the liver, breast, pros-
tate, lung, and endometrium (3–10). Here, we address how a single
transcription factor, FOXA1, forms cancer-specific genomic signatures
and differentially regulates gene expression among four human cancer
cell lines, including liver cancer cells (HepG2), prostate cancer cells
(LNCaP), and breast cancer cells (MCF7 and T47D).
, 2019
RESULTS

Functional and cell-specific FOXA1 targeting in human
cancer cell lines
High-throughput sequencing technology coupled with chromatin
immunoprecipitation (ChIP-Seq) allows us to decipher genomewide
scenarios of common and cell-specific regulation of transcription
factors. Thus, we applied a series of genomic approaches to investigate
global FOXA1 regulation in these cancer cells, including ChIP-Seq
(fig. S1A). We collected 20 sets of FOXA1 ChIP-Seq data on HepG2,
LNCaP, MCF7, and T47D cells from the ENCODE and GEO databases
(see Supplementary Materials and Methods) and reanalyzed these
ChIP-Seq data using the algorithms Bowtie2 and HOMER for reads
alignment, peak calling, and motif filtering (11, 12). We found 67,753,
88,517, 70,010, and 71,021 total FOXA1 binding peaks in HepG2,
LNCaP, MCF7, and T47D cells, respectively (fig. S1B). Not surpris-
ingly, MCF7 and T47D cells had the most uniquely common peaks
(10,259) because both of them are estrogen receptor a–positive breast
cancer cell lines. About half (47 to 54%) of the FOXA1 binding peaks
were unique to each cell line, given that the common sites between
MCF7 and T47D were considered to be unique to estrogen receptor
a–positive breast cancer cells compared to liver and prostate cancer
cells (Fig. 1A and fig. S1B). However, we found that most (68 to 75%)
of the FOXA1 target genes associated with these FOXA1 binding peaks
were common to the four cancer cell lines (Fig. 1B), suggesting that
most of these unique FOXA1 binding peaks target common genes.

Further analysis showed that each FOXA1 target gene was asso-
ciated with multiple FOXA1 binding peaks (from 1 to 99 peaks), more
than 90% of the genes had fewer than 10 FOXA1 binding peaks, and
about 30 to 40% of the target genes were only associated with one
FOXA1 binding peak in all four cancer cell lines (fig. S1C). In addi-
tion, we identified five types of gene-peak pairs of FOXA1 targeting
among the four cancer cell lines, including unique, common, and
mixed peaks (fig. S2): (i) only one unique FOXA1 binding peak
targeting a single gene in one of the four cell lines (Unique, n = 1);
(ii) multiple unique FOXA1 binding peaks targeting a single gene
in one of the four cell lines (Unique, n > 1); (iii) a single common
FOXA1 binding peak targeting a single gene in two to four cell lines
(Common, n = 1); (iv) multiple common FOXA1 binding peaks
targeting a single gene in two to four cell lines (Common, n > 1);
and (v) mixed unique and common FOXA1 binding peaks targeting
a single gene among the four cell lines (Mixed). The majority of FOXA1
targeting among the four cancer cell lines was regulated by mixed
FOXA1 binding of both unique and common peaks (fig. S1D). These
data suggest that the majority of cell-specific FOXA1 regulation results
from differential FOXA1 binding at the regulatory region of the
same target gene among the four cell lines. Why about 90% of
the human genes were bound by a single factor, FOXA1, in the four
human cancer cell lines cannot be concluded yet from ChIP-Seq
data. Thus, the identification of functional binding and targeting
from multiple binding peaks is critical for the elucidation of func-
tional FOXA1 regulation.
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“Loss-of-function” analysis is generally used to identify the function-
al regulation of a transcription factor. We analyzed FOXA1-regulated
genes from differential gene expression data on these four cell lines
with and without FOXA1 knockdown (6, 13–15). We found 1005,
1061, 2482, and 1359 FOXA1-regulated genes in HepG2, LNCaP,
MCF7, and T47D cells, respectively (fig. S1E). Surprisingly, 40 to 62%
of the FOXA1-regulated genes were unique to each cancer cell line, with
40 and 54% of these genes being unique to two similar breast cancer
cell lines (MCF7 and T47D, respectively) (fig. S1E). These differentially
expressed genes could be regulated directly or indirectly by FOXA1. By
intersecting these genes with FOXA1-associated target genes from
ChIP-Seq data (Fig. 1B), we found that most (73 to 81%) of the differ-
entially expressed genes were functionally and directly regulated target
genes of FOXA1 (Fig. 1C and fig. S1E). About half of these functional
and direct FOXA1 target genes were unique to each cancer cell line
(Fig. 1C). These data suggest that functional FOXA1 regulation is ex-
hibited in a cell-specific manner in different types of human cancer cells.
Zhang et al. Sci. Adv. 2016; 2 : e1501473 18 March 2016
Given that FOXA1 defines cancer cell specificity, suppression of
FOXA1 in these cancer cells should abolish this unique feature of
FOXA1 regulation. First, a heatmap analysis showed clear differential ex-
pression patterns of functional FOXA1 target genes in the four human
cancer cell lines (fig. S1F). Indeed, these differential expression pat-
terns were greatly attenuated after FOXA1 expression was suppressed
(fig. S1F). Further pathway analysis showed that these functional FOXA1
target genes were integral to the processes of cancer, cell growth and
proliferation, cell death and survival, organismal injury and abnormal-
ity, and cellular development (fig. S3, I to L, and table S1). Collectively,
these data strongly support our notion that FOXA1 mostly regulates
differential target genes among these four human cancer cell lines.

Unique FOXA1 binding and targeting account for
cell-specific FOXA1 regulation
To decipher the mechanisms that underlie this unique feature of cell-
specific FOXA1 regulation, we applied three approaches to examining
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Fig. 1. Cell-specific FOXA1 targeting in human cancers. (A) Heatmap analysis of FOXA1 binding in human cancer cells. (B) FOXA1-associated genes
from ChIP-Seq data are mostly common to human cancer cells. (C) Functional and direct FOXA1 target genes are mostly unique to each cancer cell line.
(D and E) FOXA1 binding is disrupted (D) and expression of FOXA1 target genes is reversed (E) by CRISPR-mediated genome editing at selected FOXA1
binding sites. P < 0.05 for all assays between the control group and the CRISPR group. Data are means ± SEM.
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the uniqueness of FOXA1 binding, genetic variations at the core
binding elements of FOXA1, and histone markers near FOXA1
binding sites. First, we analyzed the FOXA1 binding peaks associated
with functional and direct FOXA1 target genes. Upon intersection
with FOXA1 ChIP-Seq data, 7248, 11,689, 13,248, and 11,042 FOXA1
binding peaks were found to be associated with these functional and
direct FOXA1 target genes (fig. S1G). In contrast to the uniqueness of
the functional FOXA1 target genes (Fig. 1C), only about 18 to 24% of
these potentially functional FOXA1 binding peaks were unique to
each cell line (fig. S1G). Most of these potentially functional FOXA1
binding peaks were common and mixed peaks for each gene among
the four cancer cell lines (fig. S1H), which were different from the
mostly mixed peaks found in all of the FOXA1 binding peaks
(fig. S1D), although both the number of peaks associated with each
gene and the genomic locations (potentially gene regulatory regions)
of these peaks were similar between these two groups (fig. S1, C and I,
and table S2). When we only analyzed the unique functional FOXA1
target genes in the four cancer cell lines, we found that only 14 to 22%
of the FOXA1 binding peaks were unique to each cancer cell line
(fig. S1J), and these genes were mainly regulated by mixed FOXA1
binding peaks among the four cell lines (fig. S1K). These unique and
functional FOXA1 target genes associated with only unique peaks
were calculated in fig. S1L, including both a single FOXA1 peak
and multiple unique peaks targeting one unique gene (Unique, n =
1 or n > 1; fig. S2) among the four cancer cell lines. These genes ac-
count for about 18% of the total unique and functional FOXA1 target
genes (Fig. 1C and fig. S1L).

Collectively, these data indicate that the uniqueness of functional
FOXA1 targeting in each cell line is mostly determined by either the
unique FOXA1 binding peaks or the activated common FOXA1
binding peaks that could turn on and turn off the transcription of FOXA1
target genes in a cell-specific manner. For unique FOXA1 target genes,
except for those genes having only one unique peak, determining
which of the multiple FOXA1 binding peaks associated with each
target gene is functional remains uncertain. Nevertheless, we could
still identify a number of FOXA1 binding peaks of these unique
FOXA1 target genes that were solely unique to each cancer cell line
(fig. S1L). To validate the functions of the unique FOXA1 binding
peaks for these unique FOXA1 target genes in the four cancer cell
lines, we applied a novel genome editing approach, CRISPR (Clustered
Regularly Interspaced Short Palindromic Repeats) (16, 17), to dis-
rupt the core binding element (TG/ATTT) of FOXA1 binding with
guide RNA (gRNA)–directed Cas9 nuclease cleavage. We designed
eight sets of gRNA fragments to target eight unique FOXA1
binding sites, which were associated with unique FOXA1 target
genes, including ENO2, XAF1, SEC14C3, GATC, CEACAM5,
METTL6, INPP5D, and SEPT8, in HepG2, LNCaP, MCF7, and
T47D, respectively. After CRISPR treatment, FOXA1 binding was
significantly impaired at eight selected sites (Fig. 1D), and the expres-
sion of the target genes was significantly reversed (Fig. 1E). In contrast,
disruption of FOXA1 binding sites associated with FOXA1-
independent genes (APOC3 in MCF7 cells and NICN1 in HepG2
cells) by CRISPR treatment did not affect the expression of APOC3
or NICN1, respectively (Fig. 1, D and E). Thus, unique FOXA1 reg-
ulation among the four human cancer cell lines is partially attributable
to unique FOXA1 binding and targeting. Unique FOXA1 binding
in these cancer cells may lead to cell-specific gene expression and
phenotypes.
Zhang et al. Sci. Adv. 2016; 2 : e1501473 18 March 2016
Cell-specific genetic variants at FOXA1 binding sites
Genetic mutations are considered to be a direct cause of cancer. Our
recent studies and those of others have shown that genetic variations
at FOXA1 and FOXA2 binding sites could introduce a loss of
function or a gain of function of FOXA binding and were highly
correlated with the incidence and tumorigenesis of liver cancer, pros-
tate cancer, and breast cancer in humans (7, 8, 18–22). Thus, we
investigated whether the unique FOXA1 targeting in these four cancer
cell lines could be attributable to genetic variants at FOXA1 binding
sites, using deep sequencing of the entire genome for HepG2, LNCaP,
MCF7, and T47D cells (table S3). We obtained more than 7.6 million
high-quality single nucleotide variants (SNVs) from these four cancer
cell lines, approximately 14% of which were novel SNVs compared to
the human SNP138 database (Fig. 2A). More than 4 million SNVs
were found in each human cancer cell line, and about 23% of these
were common to all four cancer cell lines (fig. S3A). Further analysis
showed that these SNVs were possibly responsible for about half a
million gains or losses of the consensus FOXA1 binding element
(motif) TG/ATTT in the entire human cancer genome (fig. S3B).
An updated analysis of FOXA1 binding peaks and associated genes,
with SNV-related FOXA1 motif gain or loss considered, is shown in
fig. S3 (C and D). By intersecting the SNV data with FOXA1 ChIP-
Seq data, we found 2436 SNVs at the FOXA1 binding element (TG/
ATTT) that could lead to a gain or loss of FOXA1 binding peaks
(Fig. 2B), accounting for only less than 0.5% of the total SNV-related
gain or loss of the TG/ATTT motif in the genome. In addition, 31 to
43% of these SNV-related FOXA1 peak gains or losses were unique to
each cancer cell line (Fig. 2B and fig. S3E). We used Sanger sequencing
and chromatin immunoprecipitation–quantitative polymerase chain
reaction (ChIP-qPCR) to validate 46 of 48 selected FOXA1 binding sites
for which SNVs could cause a gain or loss of FOXA1 binding in the
four cancer cell lines (table S4). We also found that most of the SNV-
related motif gains or losses were located at potential gene regulatory
regions, including promoter, intron, and intergenic regions (table S2).
Similar to target genes associated with all FOXA1 binding (Fig. 1B),
target genes associated with SNV-related FOXA1 peak gains and
losses were mostly common to the four cancer cell lines (fig. S3F).
The close numbers between FOXA1 peaks from SNV-related gains
and losses and their target genes (Fig. 2B and fig. S3F) indicate that
these SNV-introduced gains or losses of FOXA1 binding mostly target
different genes in human cancer cells.

Next, we analyzed functional FOXA1 target genes associated with
these gains or losses of FOXA1 binding by intersecting the functional
FOXA1 direct target genes in Fig. 1C with the target genes associated
with SNV-introduced gains or losses of FOXA1 binding in fig. S3F.
We found that 256 functional FOXA1 target genes could be affected
by these SNV-containing FOXA1 binding peaks and that most of
them were unique to each cell line (Fig. 2C). However, FOXA1
binding peaks associated with these genes showed much less cell
specificity compared to their target genes (fig. S3, G and H), suggesting
that most of these unique target genes may be regulated by common
or mixed (unique + common) FOXA1 binding peaks. These FOXA1
direct target genes associated with SNV-introduced gains or losses of
FOXA1 binding account for about 7 to 14% of all unique FOXA1
direct target genes in the four human cancer cell lines. Next, we per-
formed a pathway analysis of functional FOXA1 target genes asso-
ciated with those SNV-containing FOXA1 binding peaks and found
that most of these genes played key roles in cancer, cell proliferation
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Fig. 2. Unique FOXA1 targeting mediated by genetic variants. (A) Comparison of SNVs from the four cancer cell lines (HepG2, LNCaP, MCF7, and
T47D) with SNP138. (B) SNV-introduced gain and loss of FOXA1 binding peaks. (C) Functional FOXA1 target genes associated with SNV-introduced
gain and loss of FOXA1 binding sites. (D) Frequency of SNVs in the FOXA1 binding motifs for SNV-led motif loss or gain from (C) in all of the four
cancer cell lines. (E) Example of SNV-introduced gain of FOXA1 binding sites targeting CEACAM5 in MCF7 cells.
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and growth, and cell death and survival (fig. S3, I to L, and table S1).
We also analyzed the frequency of these variants at each nucleotide of
the FOXA1 binding motif for those functional FOXA1 binding peaks
in Fig. 2C. Overall, the changes between T and C were mostly enriched
in the entire motif for both motif loss and gain (Fig. 2D). In SNV-led
motif loss, the first nucleotide T had the most frequently changed var-
iants, whereas the third nucleotide T was most frequently changed in
SNV-led motif gain (Fig. 2D).

To further validate the gain of the TG/ATTTmotif in the functional
and unique FOXA1 binding peaks, we used the CRISPR technology to
disrupt a gain mutation in a FOXA1 binding site associated with the
CEACAM5 gene in MCF7 cells and found that CRISPR led to im-
paired FOXA1 binding and reversed gene expression of CEACAM5
(Figs. 1, D and E, and 2E). These data suggest that cell-specific FOXA1
targeting in human cancer cells could also result from genetic variants
at FOXA1 binding sites.

Epigenetic regulation in the functioning of cell-specific
FOXA1 targeting
Recent studies showed that H3K4me1/H3K4me2 and H3K27ac
marked active enhancer regions (23–25), whereas FOXA1 mostly
bound to intragenic enhancer regions in the four human cancer cell
lines (table S2), consistent with our previous studies (26, 27). Studies
have shown that epigenetic factors of histone variants and modifica-
tion (such as H2A.Z, H3K4me1, and H3K4me2) play critical roles in
Zhang et al. Sci. Adv. 2016; 2 : e1501473 18 March 2016
the functioning of FOXA factors (10, 27). Thus, we speculated that
the unique feature of cell-specific FOXA1 regulation might also result
from differential epigenetic regulation near FOXA1 binding sites, es-
pecially for those common FOXA1 binding peaks that are found in
multiple cell lines but are only functional in certain cell lines. We
sequenced and collected 32 ChIP-Seq data sets for the peak calling of
eight histone markers (including H2A.Z, H3K4me1, H3K4me2,
H3K4me3, H3K9me3, H3K27me3, H3K27ac, and H3K36me3) in
these four cancer cell lines from our own libraries and from the
ENCODE and GEO databases (see Supplementary Materials and Meth-
ods). To examine the potential impact of histone modification on the
functioning of FOXA1 regulation, we analyzed the distributions of these
eight histone markers near FOXA1 binding sites and found that H2A.Z,
H3K4me1, H3K4me2, H3K4me3, H3K27ac, and H3K36me3 were en-
riched near FOXA1 binding sites associated with functional FOXA1 tar-
get genes (fig. S4A), but that only H2A.Z, H3K4me1, H3K4me2, and
H3K27ac showed cell-specific enrichment near FOXA1 binding sites
that were only associated with those functional and direct FOXA1
target genes (Fig. 3, A and B, and fig. S4, B to K); for example, for
each cell line, H3K27ac was enriched near functional FOXA1 binding
but not near nonfunctional FOXA1 binding (control) with regard to
their target genes (Fig. 3A); for all four cell lines, H3K27ac was only
enriched near cell-specific functional FOXA1 binding sites (Fig. 3B).
However, cell-specific enrichment of H3K4me3 near FOXA1 binding
sites was only observed in HepG2, LNCaP, and MCF7 cells, but not
 on June 17, 2019
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in T47D cells (fig. S4, H and I); cell-specific enrichment of H3K36me3
near FOXA1 binding sites was barely observed in any of the four
cancer cell lines (fig. S4, J and K). Further analysis showed that no
different enrichment of these histone markers was observed near
unique and common FOXA1 binding peaks associated with functional
FOXA1 target genes, indicating that histone modification might be
essential for all functional FOXA1 binding.

To further investigate the functionality of FOXA1 binding asso-
ciated with these histone markers, we applied the CRISPR technology
to disrupt a selected FOXA1 binding site associated with H3K27ac for
the XAF1 gene and found that CRISPR led to impaired FOXA1
binding and reversed gene expression of XAF1 (Figs. 1, D and E, and
3C). These data suggest that the functioning of cell-specific FOXA1
targeting in human cancer cells could require certain histone modifi-
cation and that H2A.Z, H3K4me1, H3K4me2, and H3K27ac could
mark functional FOXA1 binding and targeting in the human
cancer genome.
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DISCUSSION

We discovered a novel feature of FOXA1 regulation in liver, prostate,
and breast cancer cells in humans: there is unique FOXA1 targeting in
each cancer cell type and even between two breast cancer cell lines.
We also found that this unique regulation of FOXA1 was determined
by the unique binding of FOXA1 in the four human cancer cell lines,
Zhang et al. Sci. Adv. 2016; 2 : e1501473 18 March 2016
by a gain or loss of FOXA1 binding from genetic variants at the cis-
regulatory elements of FOXA1, and/or by potential epigenetic reg-
ulation near functional FOXA1 binding sites. Future investigation on
how these epigenetic factors participate in FOXA1 regulation is guar-
anteed. Transcriptional regulation is determined by both the binding
and the functioning of transcription factors. FOXA1 binds nearly 90%
of the genes in the human cancer genome, but only less than 17% of
this FOXA1 targeting is functional, and these functional FOXA1
targets are mostly specific to cancer cell type (Fig. 1, B and C). These
findings allow us to raise a “flower-blooming” hypothesis for cell-
specific transcriptional regulation in human cancer cells (Fig. 4). The
“blooming” (functioning) of a transcription factor in a cell-specific
manner could be controlled by its unique binding, genetic variations,
epigenetic regulation, and other factors, including coregulators and
chromatin remodeling (Fig. 4). The next question is, “How can this
hypothesis be generalized to other transcription factors?” In addition,
what are the functions of the rest of the “nonfunctional” FOXA1
binding in the genome? Our studies and those of others have shown
that FOXA1 binding might be involved in chromatin remodeling,
might act as a scaffold for other transcription factors such as steroid
hormone receptors, and/or might mark enhancer regions in the genome
(10, 19, 27). In addition, CRISPR-mediated genome editing at FOXA1
binding sites or other transcription factor binding sites could be a
powerful tool for answering these questions by manipulating targeted
gene transcription at selected binding sites of transcription factors.
Nevertheless, our findings of cell-specific FOXA1 regulation among
 on June 17, 2019
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the four human cancer cell lines not only provide mechanistic expla-
nations for cell-specific transcriptional regulation of a single
transcription factor but also shed light on the identification of novel
cell-specific biomarkers for liver, prostate, and breast cancers in
humans. In addition, unique FOXA1 regulation between two breast
cancer cell lines indicates that this unique feature of FOXA1 regulation
may also be utilized as an individual biomarker and therapeutic target
for each breast cancer patient. Related studies of patient-derived tumor
samples will provide better answers regarding this aspect and will be
worth undertaking in the future.
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MATERIALS AND METHODS

Genomic location analysis of FOXA1 and histones
We generated ChIP-Seq data for H2A.Z, H3K4me2, H3K9me3,
H3K27me3, H3K27ac, and H3K36me3 in T47D cells. FOXA1
ChIP-Seq and other ChIP-Seq data for histone markers in HepG2,
LNCaP, MCF7, and T47D cells are provided with a detailed protocol
in Supplementary Materials and Methods.

Whole genome sequencing by a PCR-free approach
Genomic DNA from the four human cancer cell lines HepG2, LNCaP,
MCF7, and T47D was sequenced with a PCR-free approach using
HiSeq 2000 (Illumina). Sequencing reads were analyzed using a Mayo
Clinic–developed pipeline for analysis of genetic variants. SNVs were
used for the analysis of motif gain or loss at FOXA1 binding sites. The
validation of SNVs was performed using regular Sanger sequencing
(table S4). A detailed protocol is provided in Supplementary Materials
and Methods.

CRISPR-mediated disruption of FOXA1 binding
A novel genome editing technology, CRISPR, was applied to disrupt
FOXA1 binding sites with gRNA-directed Cas9 nuclease cleavage
(16, 17, 28–31). A detailed protocol is provided in Supplementary
Materials and Methods.
 17, 2019
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/3/e1501473/DC1
Materials and Methods
Fig. S1. Cell-specific FOXA1 binding and targeting.
Fig. S2. Five types of FOXA1 targeting in the four human cancer cell lines.
Fig. S3. SNV-led gain or loss of FOXA1 binding and targeting.
Fig. S4. Histone modification in cell-specific FOXA1 regulation.
Table S1. Pathway analysis of functional FOXA1 target genes in human cancer cells by
Ingenuity.
Table S2. Genomic annotation of FOXA1 binding peaks in human cancer cells.
Table S3. Whole genome sequencing data for human cancer cells.
Table S4. Validation of SNV-introduced gain and loss of FOXA1 binding in human cancer cells.
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