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Host susceptibility to snake fungal disease is highly
dispersed across phylogenetic and functional
trait space
Frank T. Burbrink,1* Jeffrey M. Lorch,2 Karen R. Lips3

Emerging infectious diseases (EIDs) reduce host population sizes, cause extinction, disassemble communities,
and have indirect negative effects on human well-being. Fungal EIDs have reduced population abundances in
amphibians and bats across many species over large areas. The recent emergence of snake fungal disease (SFD)
may have caused declines in some snake populations in the Eastern United States (EUS), which is home to a
phylogenetically and ecologically diverse assembly of 98 taxa. SFD has been documented in only 23 naturally
occuring species, although this is likely an underestimate of the number of susceptible taxa. Using several novel
methods, including artificial neural networks, we combine phylogenetic and trait-based community estimates
from all taxa in this region to show that SFD hosts are both phylogenetically and ecologically randomly dispersed.
This might indicate that other species of snakes in the EUS could be currently infected or susceptible to SFD. Our
models also indicate that information about key traits that enhance susceptiblity is lacking. Surveillance should
consider that all snake species and habitats likely harbor this pathogen.
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INTRODUCTION
Emerging fungal diseases have devastating effects on wildlife abun-
dance and species diversity (1). Among terrestrial vertebrates, these
fungal diseases have commonly been recorded in amphibians (2, 3),
bats (4), and now snakes [snake fungal disease (SFD) caused by
Ophidiomyces ophidiodiicola] (5, 6). The origins of these diseases and
their effect on physiology, population demography, species loss, rates of
colonization, and community assembly are important for mitigating
their impacts on wildlife. Although it is immediately important to gen-
erate a list of susceptible taxa, unfortunately, predictions about how
widespread particular diseases are across the tree of life are generally
not well understood, likely owing to the time and expertise to survey
broad regions and sample taxa with low encounter rates (7–9). Within
amphibians and bats, the host range of fungal diseases affecting these
groupsmay appear ecologically and taxonomically randomat broad ge-
ographic and phylogenetic scales; however, nonrandom ecological and
phylogenetic patterns have been reported locally (10–14). The broad host
range exhibited by fungal pathogens is believed to play amajor role in the
catastrophic effects they canhave onhost communities (1).Understand-
ing host ecological and evolutionary diversity is also complicated by cases
where the same taxonmay respond uniquely across different areas, given
the timing of the disease invasion and environmental heterogeneity (15).

Predicting the diversity of taxa susceptible to any disease requires
understanding the degree of host specificity. For example, even at the
population level, specificity and genotype, evolutionary dynamics,
demographics, and ecology of the host and genetic and phenotypic
diversity of the pathogen all play an important role in determining
how rapidly and to what extent a quickly evolving pathogen will
spread through a population or across species (16, 17). Previously, it
was considered that pathogens rarely cause species extinction, but
both theoretical models and empirical evidence indicate that extinc-
tion is possible given the host abundance size and the presence of
reservoirs (18, 19). Extirpation of taxa in local communities can pro-
duce negative downstream consequences such as changing predator
and prey relationships, altering habitat quality, enhancing community
disassembly, or even affecting the prevalence of disease relevant to
human health (7, 20–22).

Understanding the taxonomic extent of host susceptibility when a
disease emerges regionally would allow us to predict (i) the capacity
of the pathogen to infect host species not yet recorded, (ii) potential
interactions among host species and disease transmission given the
ecology, and (iii) whether the taxonomic identity of hosts is related to
the dispersion across the phylogeny. With information about phylo-
genetic dispersion of hosts from a small number of observations, we
can better understand whether infected taxa are restricted to specific
clades having particular traits. If infected species are part of taxonomic
groups occurring outside of the known range of the pathogen, then the
disease could occur in related species in other areas, particularly if the
disease was not constrained to the specific ecology of a host. In this case,
ecology of the hosts would also be randomly dispersed, and the disease
would be expected to spread over a broader range of habitats and across
the phylogeny.

The emerging pathogen, Ophidiomyces ophiodiicola, that causes
SFD has been recorded in wild snakes inhabiting much of the Eastern
United States (EUS), which mostly includes the coastal, forested, and
adjacent prairie habitats and dry areas east of the Continental Divide,
although recently, the pathogen was detected on three species of snakes
commonly found in Europe (23). The disease primarily affects the skin
of snakes. Although molting may help resolve mild cases of SFD,
conditions experienced by wild snakes may result in development of
life-threatening infections (6). Death in wild snakes infected with SFD
is likely related to multiple factors including physical damage to tissues
and behavioral modifications that lead to increased risk of predation,
environmental exposure, and starvation (6). This disease has been pre-
viously reported in 23 species from the EUS, although it is unclear how
widely distributedO. ophiodiicola is over the taxonomy and phylogeny
of snakes in this region. Snakes in the EUS represent a diverse group of
colubroid families, including viperids, colubrines, and natricines, all
sharing a common ancestor as recently as 50 million years ago (24).
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As expected from this diversity, snakes in this region have a wide range
of ecologies in primarily fossorial, terrestrial, or aquatic habitats (25). It
is unclear whether Ophidiomyces can infect taxa with particular ecolo-
gies important to snakes, such as habitat, body size, reproductive mode,
clutch size, diet, or diel pattern.

Snakes are generally secretive, and securing information on the ex-
tent of species-specific susceptibility of the disease from all taxa in the
EUS is difficult. Specifically, morbidity, mortality, and population
declines suspected to be associated with SFD have been documented
predominantly in snake populations that were extensively monitored
(5, 6, 26); however, little is known about species vulnerability across
eastern North America.

Here, we examine the distribution of wild hosts infected with
Ophidiomyces in a phylogenetic and ecological context to estimate dis-
persion. We use phylogenetic estimates at various spatial-phylogenetic
scales covering the EUS, total United States (US), and the world and ap-
ply community phylogenetic methods and machine-learning approaches
to examine several competing scenarios to understand how dispersed
this disease is over trait and phylogenetic space: (i) In cases where infected
taxa are phylogenetically and ecologically closely related, relative to a
random sample of taxa, underdispersion is predicted, and the disease
should only be confined to those taxa. (ii) Alternatively, if infected
taxa are overdispersed both phylogenetically and ecologically, then only
unrelated taxa should be susceptible to the disease when compared to
a random distribution of species’ relationships and ecologies. Instances
where this would happen are likely rare, but it is possible that infected
species are targeted to a narrow range of ecologies but are phyloge-
netically unrelated; these taxa are ecologically convergent (and un-
derdispersed) but phylogenetically overdispersed, which suggests that
only taxa with particular traits are susceptible. (iii) Closely related
infected taxa may have very different ecologies, particularly where
competitive exclusion or evolution into distinct niches occurs; here,
taxa will be phylogenetically underdispersed but ecologically over-
Burbrink, Lorch, Lips, Sci. Adv. 2017;3 : e1701387 20 December 2017
dispersed. (iv) The infected taxa could be completely random phy-
logenetically and ecologically, which would suggest that the disease is
not targeting any particular group of snakes that have any specific traits.
RESULTS
Phylogenetic species variability
We first show that there is no phylogenetic signal for SFD-infected taxa
at any spatial scale, where tree transformations yielding no phylogenetic
signal (Pagel’s l = 0) are always significantly better supported (DAIC >
20; P < 1.3 × 10−6) than untransformed trees. We used three phyloge-
netic trees with taxa from (i) the EUS, (ii) all US species, and (iii) a large
sampling of global taxa to estimate phylogenetic species variability for
all taxa infected with SFD in the wild and those infected both in the wild
and in laboratory settings relative to a random shuffling of infected taxa.
We determined at each spatial scale (global, US, and EUS) that our real
values of phylogenetic species variability (iPSV) were not lower than
expected (underdispersed), suggesting that the 23 known infected taxa
were not phylogenetically more closely related than a random sampling
of 23 taxa (Fig. 1). For our infected taxa from the EUS, we estimated a
mean iPSV at 0.633, which was not significantly over- or underdis-
persed relative to 1000 randomly shuffled groups (nPSV) retaining
the same number of species of infected taxa (95% nPSV = 0.574 to
0.689; Fig. 1). We found that iPSV at 0.427 is phylogenetically under-
dispersed relative to both the global sample of wild infected taxa [nPSC
95% confidence interval (CI), 0.555 to 0.678] and a combination of wild-
and laboratory-infected taxa (iPSV = 0.625, nPSC 95% CI, 0.572 to
0.680). At the scale of US, iPSV (0.230) was random (95% nPSC =
0.245 to 0.326).

Trait variability
We also examined how infected taxa in the EUS were dispersed with
respect to ecologically important traits, including habitat preference,
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Fig. 1. (A) Traitgram of snakes found in the EUS, which projects the topology of the molecular phylogeny related to traits (on the x axis), showing SFD-infected taxa in
red. (B) PSV density distribution of 1000 null communities (n = 23) assembled from the random samples taken from the 92 sampled taxa in EUS. The distribution
colored blue indicates the proportion of the distribution above the actual PSV value (0.633) for the real SFD-infected community.
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parity, average clutch size, diel pattern, diet, and maximum body size,
relative to other species found in the EUS. Using all taxa and traits, we
estimated three optimal multivariate clusters representing natural
ecological/trait groupings using the average silhouette width criteria
(Fig. 2). Similarly, the Duda-Hart test significantly rejected a single
cluster in favor of >1 cluster. The clusters represented three groups of
ecologically distinct taxa, which included the following types: (i) large-
bodied terrestrial, (ii) aquatic, and (iii) small leaf-litter or fossorial
snakes (see Fig. 2 and the Supplementary Materials). We found that
infected taxa were not ecological outliers; individuals belong to groups
1, 2, and 3, and were not significantly different from their group me-
doids (P > 0.05) relative to other taxa in that category. Similarly, we
found that ecological variance among the 23 infected taxa were not sig-
nificantly smaller than 1000 random combinations of 23 taxa from the
pool of uninfected taxa (P = 0.11).

Functional-phylogenetic metrics
Results examining the relative contribution of both traits and phylogeny
to SFD susceptibility using functional-phylogenetic distance (FPDist)
metrics showed a conserved pattern, where the trait distances increase
with phylogenetic distances (Fig. 3). The effects of both traits and phy-
logeny, considered simultaneously, showed no pattern of significant
under- or overdispersion relative to 1000 random simulations. This
suggests that taxa with SFD were randomwith respect to the combined
influence of traits and phylogeny.
Burbrink, Lorch, Lips, Sci. Adv. 2017;3 : e1701387 20 December 2017
Artificial neural networks
To understand whether the combination of trait and phylogenetic data
can accurately classify infected taxa, we developed an optimal artificial
neural network (NN) with 11 input neurons containing scaled trait
and phylogenetic information, a single layer of 3 hidden neurons, and
1 output neuron that identified whether taxa were infected or un-
infected. We sampled 70% of our total trait and phylogenetic data to
train the NN and 30% to test accuracy. This procedure was replicated
100 times with randomly selected training and test data sets. Whereas
all randomly sampled training data sets converged over all replicate data
sets withmodel size = 1 and decay = 0, accuracy predicting infected taxa
was limited (Fig. 4). To understand whether our NN can identify
infected species, we developed additional tests. Using simulated data
over the phylogenetic tree used here and under optimal conditions
where there is a perfect phylogenetic and trait association with the dis-
ease, we show that the NN performs with 100% accuracy, given these
new training and test data; here, accuracy, DA, measures the difference
between trueNNaccuracy and shuffled infected-identity accuracy (Fig. 5).
Furthermore, we demonstrate that whenmost of these simulated trait
data are completely randomized and the remaining minority of traits
were randomly shuffled by 0 to 40% of the original trait values, that ac-
curacy remains high.Using our real data, we show thatDAwas centered
on 0 and the AUC value was at 0.63, suggesting that our real data have
little ability to predict infected taxa. Generally, body size was the most
important predictor variable among replicates, although we note that
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Fig. 2. (A) Multivariate clusters showing the three trait/ecological groups for snakes found in the EUS. Taxa infected with O. ophidiodiicola are bold within each group.
(B) Distributions of P values showing the probability of having a Euclidian distance from each infected taxon to their group medoid are greater than those distances
among all other uninfected taxa and medoid per group for all groups (see text). Infected taxa are generally not ecological outliers in any particular cluster.
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this may reflect the bias of larger infected taxa being more commonly
observed. The populations of infected taxa were generally larger than
those uninfected (t test; t = −3.20; P = 0.002).

Given that our conclusions suggest the possibility that all taxa
may be infected, it then follows that the possibility of detecting SFD is
biased by those taxa most commonly encountered by researchers.
Summarizing the presence of each taxon across surveyed sites across the
EUS (25, 27), logistic regression shows a significant association between
commonality and binary presence of SFD (P < 0.035), although for
every unit increase in commonality, log odds increased by only 0.019
(95% CI, 0.005 to 0.035). Furthermore, using the same phylogenetic
relationships and trait data in our real study, but now with positive
SFD paired with only the 23most common taxa across sites in the EUS,
we show that the DA metric is centered on 0.006, which was similar to
results using real data.
0

DISCUSSION
Using a unique combination of phylogenetic methods that integrate
ecology to understand the taxonomic range of an emerging infectious
disease (EID), our results suggest that SFD is both phylogenetically
and ecologically randomly dispersed in the EUS (Figs. 1 to 3). As cur-
rently known, taxa susceptible to infection byOphidiomyces are likely
a random sampling of the entire snake fauna of the EUS. Although it is
not possible to predict which taxa are likely to be infected next, using
phylogenetic relationships alone, it is possible that all 98 taxa in this
region are susceptible to SFD. Although some wildlife diseases infect
closely related species, in others, such as several fungal EIDs, the phy-
logenetic diversity of host taxa is quite large (1, 28).

Phylogenetic dispersion alone does not capture how the ecology of
snakes relates to vulnerability to Ophidiomyces. Therefore, we demon-
strate that taxa with SFD represent most of the basic ecological types of
snakes found in the US (Figs. 2 and 3), which include snakes that are
aquatic, terrestrial, fossorial, viviparous, oviparous, diurnal, nocturnal,
Burbrink, Lorch, Lips, Sci. Adv. 2017;3 : e1701387 20 December 2017
communally denning during brumation, and solitary brumation, as
well as those with diets composed of vertebrates, other snakes, and
mostly invertebrates (24). Note that the known infected taxa have larger
body sizes than the uninfected, although this estimate may represent
observational bias in the field based on commonality of the species across
sites in the EUS. Our methods therefore indicate that researchers should
consider that SFDhas the potential to infect a wide range of snake species
in different ecologies and should not be biased by taxonomy and habitats.
Because too little is understood about the epidemiology of SFD, it is un-
clear which traits, if any, influence susceptibility toOphidiomyces infec-
tion. We show that few broad-scaled traits characterizing the major
ecological groups of snakes in the EUS influence which species will be
infected; our analyses suggest that many species not currently docu-
mented as being vulnerable are likely susceptible or already infected
withOphidiomyces (Figs. 1 and 2). Therefore, surveys of SFD should not
be biased by taxon or ecology. In addition, given the spatial dispersion
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of the disease (6), outbreaks could likely occur throughout this entire
region. Unfortunately, the basic geographic information on the occur-
rence of SFD is derived from a few hosts; we therefore underscore that
more knowledge about the basic biology and ecology ofOphidiomyces is
necessary to predict the spatial range of this fungus. Without knowing
how this disease is transmitted in the wild, it is imperative that care is
taken when handling or transporting any species of snake found in this
region. This region also contains several federally listed threatened or
endangered taxa includingDrymarchon couperi,Nerodia clarkia taeniata,
Nerodia erythrogaster neglecta, andPituophismelanoleucus lodingi aswell
as locally listed species throughout every state (see the Environmental
Conservation Online System).

Over large geographic areas and deep evolutionary time, the mech-
anisms that influence the presence of EIDs include rates of dispersal
and extinction, potential transmission by humans, and, in this study, the
phylogenetic diversity of local hosts (9). At broader spatial scales, which
here included the US or the world, we find these taxa to also be phylo-
genetically randomly dispersed or underdispersed, respectively. In the
US, the most recent common ancestor among the infected taxa ranges
from 50 to 75 million years ago (24). This does not suggest that the
origins of SFD infections in snakes are this old, but rather, the disease
can affect taxa from all groups that share amost recent common ances-
tor in the Tertiary or Late Cretaceous. The evolutionary history of the
pathogen itself has not been examined, although a recent phylogeny of
Ophidiomyces suggests that three main groups exist, two sister clades
Burbrink, Lorch, Lips, Sci. Adv. 2017;3 : e1701387 20 December 2017
in wild snakes in Europe and North America and one deeper clade re-
presented by an isolate froma captive snake in theUnitedKingdom (23).

Nearly all known groups in the EUS have tested positive for SFD,
which include the rattlesnakes (Viperidae), ratsnakes, milksnakes, king-
snakes and racers (two deep lineages of Colubrinae), and watersnakes
and gartersnakes (Natricinae) (25). Two species of grasssnakes (Natrix;
Natricinae) and one adder species (Vipera; Viperidae) recently tested
positive for the pathogen in the United Kingdom and the Czech
Republic (23). All of these European and North American families
and subfamilies are part of Colubroidea, which excluding the remainder
of Alethinophidia (for example, boas, pythons, sunbeam, and pipe
and shieldtail snakes) and typhlopoids (blindsnakes) represent ~83%
of all snakes (29). Although infections caused by Ophidiomyces have
not been reported in the venomous coral snakes (Elapidae) found in
the EUS, SFD has been associated with disease in a captive Australian
elapid (30), suggesting species from the US in this family may also be
vulnerable. Species from all of these infected subfamilies and families
are found on every continent in the world (31), although the disease is
only known in these groups from wild populations in EUS and Europe
(5, 6, 23). Given the broad diversity of snakes infected, the range of
biomes occupied, and that SFD can live outside of the host, it is plausible
that Ophidiomyces is present globally or at least occurs throughout
temperate regions of the world.

Our study mainly focused on snake species found in the EUS. How-
ever, Ophidiomycesmay pose a disease risk to snake species on a global
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level. From a phylogenetic perspective, if ecology of the host and ge-
ographic area are negligible toOphidiomyces, then the disease should
occur in colubriod species throughout the New World. Snakes from
other groups host this disease in a captive setting (for example, Ac-
rochordidae, Boidae, Elapidae, and Pythonidae) (30, 32), although
infected individuals from these groups have not, to our knowledge,
been found under natural conditions. If snakes from these divergent
families are also capable of developing SFD in the wild, then hosts
forOphidiomyces aremuchmore dispersed at nearly the deepest phylo-
genetic scales, which would include 88% of all extant snakes in
Alethinophidea (29). In addition, if the fungus (or particular strains
of the fungus) is introduced outside of its native range and into naïve
snake populations in other parts of the world, then the consequences
could be as devastating, as evidenced by other vertebrate fungal diseases
(1), particularly given the possibility that the disease could spread
via the snake trade through sources originating among species found
in the EUS.

Greater surveillance of SFD globally could enhance our understand-
ing of the phylogenetic and ecological extent of the disease, as well as the
possible areas of origin. A better understanding of the timing and area of
origin and modes of transmission of SFD is needed to predict whether
SFD will spread beyond known areas. Even in the US, it is unknown
whether SFD was introduced in the last few decades from the pet trade,
as the relatively recent confirmation of SFD in wild snakes would in-
dicate, or was present for many generations, as field reports and large
distances among outbreaks might suggest (6). Therefore, considering
the intersection among phylogenetic, temporal, and spatial variables
of the disease, natural history collections should be considered as a
valuable resource for monitoring and modeling recent historical bio-
geography of SFD, provided accurate identification of Ophidiomyces
can be rendered from these sources (19).

Although the NN shows low accuracy when predicting which par-
ticular species is susceptible to SFD, this may be because not all infected
taxa are known to be infected, and key predicting variables are unknown.
Alternatively, our NN simulations (Fig. 5) and functional-phylogenetic
tests suggest that all snakes are likely susceptible to SFD regardless of phy-
logenetic relationship, associated traits, or primary ecology. To better un-
derstand which taxa will become infected and the probability of the
disease emerging in other biomes and regions, more information is
needed about the transmission of Ophidiomyces in the wild, pathogen
populationdynamics relative to changes in the host’s ecology, phenotype,
and genome, and the basic biological processes associated with exposure
to new hosts, as well as potential factors related to host resistance (33).

Emerging wildlife diseases may have large effects on nontarget taxa.
In some instances, the loss of wildlife may affect the community com-
position of other taxa or, with the loss of some groups, reduce essential
wildlife services (7, 20, 21). Snakes are likely no different. They consume
a massive variety of prey in the EUS and, for example, provide essential
services like reducing populations of pests or acting as ecosystem
monitors (34). In the EUS, snakes represent the dominant group of
squamates (up to 100% of all species in some communities), and loss
of these taxa would likely affect the structure of communities acrossmul-
tiple trophic levels.

Knowledge of how populations are affected by EIDs for each spe-
cies and across communities and biomes is one of the primary goals for
understanding the severity and long-term projections for disease man-
agement (15). Our predictions suggest that Ophidiomyces could likely
infect more snake species in the EUS than is documented and that our
knowledge of which species are infected is likely dependent on how
Burbrink, Lorch, Lips, Sci. Adv. 2017;3 : e1701387 20 December 2017
common they are in the community. Therefore, to advance our under-
standing of SFD, it is necessary to (i) screen a broad sampling of wild
populations for the presence of Ophidiomyces; (ii) monitor suscepti-
bility among taxa; (iii) estimate variance in detectability, intensity, and
lethality among species and populations; (iv) understand the timing of
SFD introduction (if applicable) and changes in lethality; (v) associate
changes in infection intensity across seasons, climate, and biomes; and
(vi) understand the extent towhich the environment acts as a reservoir
for the pathogen and how this interacts with snake hosts (35, 36). Our
analysis focused simply on susceptibility to SFD but did not account for
potential differences in disease prevalence, severity, or population
affects among species. Although SFD can be fatal and cause declines
in some populations, individual recovery from the disease is also com-
mon (6); it is unknown how SFD affects survivability and recruitment
across snake species and populations at a broader scale. Therefore,
the effect of SFD on snake population demographics by host species
is needed to understand whether Ophidiomyces reduces populations
uniformly across taxa with different ecologies, physiologies, demo-
graphies, and migration rates. Furthermore, basic knowledge of
transmission of this disease across taxa and biomes is needed to under-
standwhetherOphidiomyces is likely containedwithin EUS and Europe
or naturally occurs (or could be spread) throughout other biomes and
continents.
MATERIALS AND METHODS
Identity of susceptible wild snakes
We used the list of susceptible species described in the study of
Lorch et al. (6) for our analyses restricted to the EUS and the US.
Because it is unclear whether snakes that developed SFD in captivity
were exposed to conditions suitable for disease development in the
wild, host taxa for which the disease has been documented only in a
captive setting were excluded (table S1). We also added three addi-
tional species to the list of infected taxa based on recent submissions
of snakes with SFD to the U.S. Geological Survey, National Wildlife
Health Center (NWHC). These included Lampropeltis holbrooki
(collected on 16 April 2016 from Elk County, KS, USA; NWHC case
numbers 27242-004 and 27242-005),Nerodia cyclopion (collected on
03March 2016 from Iberville Parish, LA, USA; NWHC case number
44736-093), and Pantherophis emoryi (collected on 16 April 2016 from
Elk County, KS, USA; NWHC case numbers 27242-001, 27242-002,
and 27242-003). For our global analysis, we included two species,Natrix
natrix and Natrix tesselatus, recently discovered to be infected with
Ophidiomyces in Europe (23). A third, Vipera berus, tested positive
for SFD but remained uninfected. We also conducted another test
where we included all infected taxa found both in the wild and in the
laboratory, which included additional speciesAcrochordus sp., Eunectes
murinus,Boiga irregularis,Nerodia clarkia, Pantherophis guttatus,Hop-
locephalus bungaroides, Python regius, Python sebae,Agkistrodon pisciv-
orus, and Crotalus adamanteus.

Phylogenetic trees
We determined whether infected snake taxa deviated from null phylo-
genetic models that include the pool of snakes from threemain areas:
(i) global, (ii) the US, and (iii) the EUS. For global distributions, we
used the largest molecular phylogeny of snakes containing 1583 taxa
sampled from all continents where snakes occur (37), and from the
US, we used a phylogeny containing 144 resident species, which was
then pruned to the 92 colubroid taxa that were sampled in the EUS
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(text S1).Methods for the assembly of taxa and phylogenetic estimation
using all 144 species were taken from the study of Burbrink and Myers
(25). Note that this tree, dates, and support were similar to previous
estimates where all of themain families, subfamilies, and tribes (Crolatinae,
Natricinae, Dipsadinae, Lampropeltini, and Colubrinae) were well
supported and genera are monophyletic (31).

Phylogenetic dispersion of SFD
We first determined whether there was a phylogenetic signal among
taxa in the EUS, US, and global scales by transforming the phylogenies
using Pagel’s l set to zero (no phylogenetic signal) and then fitting the
infected data to these l-transformed and untransformed trees using
the R package GEIGER (38). Further, to examine phylogenetic diversity
among the infected taxa at global, US, and EUS scales, we calculated
the richness-independent measure of PSV (39) using the R package
(40) Picante and the function phylostruct (41). To determine whether
the infected taxa (iPSV)were phylogenetically over, under, or randomly
dispersed relative to an infected sample of the same size, we generated
1000 random groups of taxa from the EUS, total US, and global pools of
taxa from these trees while preserving species richness and phylogenetic
relationships.We then calculated a null distribution of PSVs from these
1000 groups. We determined whether the infected taxa were overdis-
persed (iPSV > 95% of null groups) or underdispersed (iPSV < 95%
of null groups) from each of the three regions.

Trait diversity data
To characterize the basic ecology of snakes in the US, we previously
recorded habitat preference, parity, average clutch size, diel pattern, diet,
and maximum body size from the study of Burbrink and Myers (25)
(table S2). Body and clutch size were log-transformed, and presence
or absence was scored for viviparity or oviparity, nocturnal or diurnal,
and diel patterns. Dummy variables using 0/1were coded for the habitat
categories (terrestrial, aquatic, and fossorial) and diet (mammals, birds,
lizards, snakes, frogs, salamanders, arthropods, worms, and gastropods).
Note that these metrics provide a standard estimate for basic ecologically
relevant traits in snakes (25).

Trait dimensionality and SFD
We determined whether the known infected taxa were ecologically dif-
ferent from the taxa not confirmed to have SFD. To reduce the dimen-
sionality of this trait data set, which includes both continuous and
categorical traits, we calculated all pairwise dissimilarities using Gower
distances (42) in the R package Cluster (43). With these distances, we
estimated the number of distinct clusters aroundmedoids using the op-
timum average silhouette width (44) with the pamk function in Cluster.
This test also determined the optimal number of clusters (k = 2 to 15),
and with the Duda-Hart test (45) we estimated whether a single cluster
for these data is likely.

With these clusters, we determined whether the distance of each
infected taxon to their particular cluster medoid was significantly greater
than the distances from all other taxa in that cluster. This provides
another level of evidence about how closely fit the infected taxa are
to their cluster.

In addition, we also determined whether the total trait variance for
the infected taxa was smaller than a random sample of the uninfected
taxawhile preserving the same richness as the infected taxa (n= 23).We
converted Gower distances to the principal coordinate scores for each
taxon using principal component decomposition with the pcoa function
in ape (46). We reconstructed 1000 data sets of 23 randomly selected
Burbrink, Lorch, Lips, Sci. Adv. 2017;3 : e1701387 20 December 2017
uninfected taxa and calculated variance to determine how often this val-
ue was larger than the variance from the infected taxa; the expectation
was that if infected taxawere ecologicallymore closely related, then their
overall trait variance should be significantly lower than the variance of
the uninfected taxa.

Relative influence of trait and phylogenetic diversity on
occurrence of SFD
Patterns of dispersion by phylogeny or ecologically important traits
alone may not be helpful in determining which of the two factors are
relatively driving susceptibility to SFD. Therefore, we examined the
relative contribution of traits and phylogeny within the known SFD-
infected taxa. We first generated a traitgram (47), which is a phylogeny
of all snakes in the EUS with known infected taxa highlighted but scales
branch lengths and position against trait values.

We determined how significant the relative influence of traits and
phylogeny on the SFD-infected taxa was by estimating FPDist using
both phylogenetic distance (PDist) and trait functional distance (FDist),
calculated as the Euclidian distance among taxa across all traits (47).We
related these two factors using the equation FPDist = (aPDistp + (1− a)
FDistP)1/p to determine the relative contribution of the phylogenetic
(PDist) and the functional (FDist) component via a tuning parameter
a, which ranges from 0, where FPDists are dominated by trait distances,
to 1, where FPDists are dominated by phylogenetic distance. We de-
termined, over 20 incremental increases of a from 0 to 1, whether
functional or phylogenetic under- or overdispersion exists. We then
compared these to 1000 randomized simulations that, given signifi-
cance, reveal the relative contribution of traits and phylogeny regarding
SFD susceptibility. For example, a values between 0 and 1 indicate that
both functional and phylogenetic contributionswere important for SFD
susceptibility. Here, FPDist will decrease with an increase in a for phy-
logenetically diverging taxa showing a necessary decreasing contribu-
tion of traits and increasing contribution of phylogeny. The metric
increases with awhere SFD occurs in convergently evolving taxa due
to an increasing contribution of phylogeny [see Fig. 1 in Cadotte et al.
(47)]. This may indicate a situation where none of the scored characters
reflect real functional differences among the SFD-infected taxa, but that
phylogeny is suggestive that some undetermined traits may predict sus-
ceptibility. For functional underdispersion, traits should bemore similar
than expected, suggesting that SFD was infecting taxa with a particular
trait related to a particular ecology. By contrast, it was expected that in a
situation where phylogenetic underdispersion with a lack of functional
underdispersion occurs, taxawith SFD should be phylogeneticallymore
closely related compared to a randomassemblage of taxa. For functional
overdispersion in this community, traits reflect greater differences than
expected, whereas for phylogenetic overdispersion with a lack of
functional-trait overdispersion, it was expected that taxa with SFDwere
phylogenetically less closely related than expected. A mixture of phylo-
genetic and functional over- and underdispersion or null patterns was
possible within a community.Where nonsignificance occurs at any val-
ue of a, we predicted that the infected taxa were randomwith respect to
both phylogeny and traits.

Predicting occurrence of SFD using artificial NNs
To determine whether the combination trait and phylogenetic data
can accurately classify infected taxa, we used artificial NNs, a type of
machine-learning method that does not require prespecified rela-
tionships between covariate predictor and response variables and does
not assume that the data were distributed in any particularly way (48).
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The NN method will allow us to maximize classification accuracy of
this disease in snakes (0, uninfected; 1, infected) by taking ecological
and phylogenetic information as input neurons connected via
synapses to hidden neurons and then output a classification neuron.
The NN will determine the relationship between trait and phyloge-
netic variables and presence of disease by taxon. For this data set
where the identity of all infected taxa in the wild likely remains un-
known, NN will not be negatively affected by unknown interactions
among variables and collinearity among data arising from sampling
bias (48).

We first converted the predicted binary habitat, trait, and diet data
into Gower distances and transformed these using pcoa, and scores
from each primary axis were associated with each taxon. Similarly,
phylogenetic distances were transformed using pcoa, and scores
from the first five axes were associated with each taxon (see previous
section). The predictor data set—composed of phylogenetic, body
and clutch size, habitat, and dietary variables—were scaled from
0 to 1 for each variable. From this, 70% were randomly chosen for
training the NN and 30% for testing.With the R package caret, we gen-
erated an NN model using the train function with 25 bootstrapped
replicates to assess decay and accuracy for model convergence over
one, two, and three layers of hidden neurons (49). We tested accu-
racy using the predict and postResample functions for our best
model with the 30% retained samples. To determine the robustness
of ourmodel,we resampled the testing and trainingprocedure 100 times,
estimated the accuracy of predicting infected taxa for each sample,
and subtracted this from a random shuffling of infected taxon iden-
tity (DA). A distribution of DA centered on 0 indicates that themodel
has little predictive power given the input neurons. Similarly, we pre-
dicted AUC to determine power of this model, where values lower
than 0.7 indicate little ability to predict infected taxa.

To understand whether this NN could detect taxa with the disease
over various optimal conditions, we simulated the disease containing
the same number of taxa infected (n = 23) over the phylogeny used pre-
viously. Here, we chose the infected taxa to be themost inclusive species
of a clade, therefore making a perfect association between phylogenetic
relationship anddisease.We then simulated continuous data andplaced
the same number of binary traits used in our real study on this tree to
also have a perfect phylogenetic association with the disease. The con-
tinuous traits on this tree were simulated using fastBM in phytools (50).
Using these variables, we tested the accuracy of the NN under con-
ditions where 1 (4%), 2 (9%), 3 (13%), 4 (17%), 5 (22%), or 6 (26%) trait
variables were randomly chosen, and data from each variable were
shuffled by 0, 20, 40, 60, 80, and 100%; the remaining trait variables
(74 to 96%) were randomized by 100% (random noise). All data sets
and tests were replicated 100 times for each set of variables (1 to 6)
and randomizing percentages.

If all taxawere infected and if detecting SFDwas biased by those taxa
most commonly encountered by researchers, then we expect to find a
significant association bias between the disease and commonality. We
summarized the presence of each taxon across surveyed sites across the
EUS using data taken from two previous studies (25, 27) and performed
a logistic regression using R where the binary presence of the disease
was predicted by commonality across site. In addition, to determine
whether unknown commonality yields similar NN predictions as with
our real data, we replaced the identity of the infected and uninfected
taxa using our real trait and phylogenetic data matrix; we then rescored
the 23most common taxa as being infected.We ran theseNN100 times
and estimated DA.
Burbrink, Lorch, Lips, Sci. Adv. 2017;3 : e1701387 20 December 2017
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