ENVIRONMENTAL STUDIES

Methylmercury uptake and degradation by methanotrophs

Xia Lu,¹ Wenyu Gu,² Linduo Zhao,¹ Muhammad Farhan Ul Haque,² Alan A. DiSpirito,³ Jeremy D. Semrau,² Baohua Gu¹*

Methylmercury (CH₃Hg⁺) is a potent neurotoxin produced by certain anaerobic microorganisms in natural environments. Although numerous studies have characterized the basis of mercury (Hg) methylation, no studies have examined CH₃Hg⁺ degradation by methanotrophs, despite their ubiquitous presence in the environment. We report that some methanotrophs, such as *Methylosinus trichosporium* OB3b, can take up and degrade CH₃Hg⁺ rapidly, whereas others, such as *Methylococcus capsulatus* Bath, can take up but not degrade CH₃Hg⁺. Demethylation by *M. trichosporium* OB3b increases with increasing CH₃Hg⁺ concentrations but was abolished in mutants deficient in the synthesis of methanobactin, a metal-binding compound used by some methanotrophs, such as *M. trichosporium* OB3b. Furthermore, addition of methanol (>5 mM) as a competing one-carbon (C1) substrate inhibits demethylation, suggesting that CH₃Hg⁺ degradation by methanotrophs may involve an initial bonding of CH₃Hg⁺ by methanobactin followed by cleavage of the C–Hg bond in CH₃Hg⁺ by the methanol dehydrogenase. This new demethylation pathway by methanotrophs indicates possible broader involvement of C1-metabolizing aerobes in the degradation and cycling of toxic CH₃Hg⁺ in the environment.

2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

INTRODUCTION

Methylmercury (CH₃Hg⁺) toxin is predominantly produced by certain anaerobic microorganisms (for example, *Desulfovibrio desulfuricans* ND132 and *Geobacter sulfurreducens* PCA) having two key genes (*hgcA* and *hgcB*) necessary for converting inorganic mercury (Hg) to CH₃Hg⁺ (1–3). It can accumulate and biomagnify at high levels in fish as well as in rice grains, and human consumption can cause neurological damage (4–7). Our understanding of the mechanisms responsible for Hg methylation has greatly improved recently through the identification of the genetic basis (1–3) and factors affecting Hg methylation (8–12). However, net CH₃Hg⁺ levels in the environment depend on two competing biological processes—CH₃Hg⁺ production and demethylation (13–17), although demethylation can also take place photochemically in surface waters (18).

To date, much attention has focused on Hg methylation, but fewer studies have examined microbial demethylation, except the process mediated by the *mer* operon (17, 19), in which demethylation is carried out by an organomercurial lyase (MerB). MerB cleaves off the methyl group to form methane (CH₄) and Hg(II), whereas a mercuric reductase (MerA) reduces the released Hg(II) to volatile elemental Hg(0) (7, 13, 20). However, only certain aerobic prokaryotes have this CH₃Hg⁺ degradation pathway. *mer*-mediated pathway is operative only at extremely high Hg concentrations (that is, micromolar) (7, 17, 21), conditions that are largely irrelevant to most natural waters and sediments, where Hg or CH₃Hg⁺ concentrations are usually at picomolar to low nanomolar ranges (7, 17). In addition, in vitro experiments with the isolated MerB enzyme showed that demethylation by MerB occurs generally at above neutral pH conditions, with an optimal pH of ~10 (21).

However, degradation of CH₃Hg⁺ has been observed in anoxic sediments and in a limited number of pure cultures at relatively low Hg concentrations (for example, nanomolar) (14–17, 22). Anaerobic sulfate reducers and methanogens are thought to be primarily responsi-

¹Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. ²Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA. ³Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA. *Corresponding author. Email: gub1@ornl.gov

ble for this oxidative demethylation because Hg(II), CH₄, and carbon dioxide (CO₂) have been identified as major products (14–16). Despite the finding of CH₄ and CO₂ evolution, methanotrophs are not considered as important players in the oxidative demethylation of CH₃Hg⁺. The possible involvement of methanotrophs has never been directly tested, and the bacteria involved and pathways leading to oxidative demethylation remain unexplored.

Methanotrophs can thrive under a wide range of redox conditions, particularly at the oxic-anoxic interface where CH₄ and CH₃Hg⁺ are commonly observed (23–25). They are widespread and found in diverse locations, such as freshwater and marine sediments, bogs, forest and agricultural soils, and volcanic soils (26, 27). Many methanotrophs also produce an extracellular metal-binding peptide called methanobactin that has been shown to bind CH₃Hg⁺ (28, 29). In addition, most methanotrophs can use methanol as a one-carbon (C1) growth substrate, and some can also grow on methylamine (24, 30), and we therefore hypothesized that at least some methanotrophs can take up and possibly degrade CH₃Hg⁺.

RESULTS AND DISCUSSION

CH₃Hg⁺ uptake and degradation were first examined in representative strains of α -(Methylosinus trichosporium OB3b) and γ -proteobacterial (Methylococcus capsulatus Bath) methanotrophs. Both methanotrophs were found to sorb substantial amounts of CH₃Hg⁺, with M. trichosporium OB3b showing slightly higher sorption affinity and kinetics than M. capsulatus Bath (Fig. 1A). Within 1 hour, ~95% of the CH₃Hg⁺ was sorbed or associated with M. trichosporium OB3b, whereas only ~65% was associated with M. capsulatus Bath cells, although the sorption increased to ~85% on M. capsulatus Bath cells in 4 hours. Analyses of Hg species distributions indicated that a large percentage of the CH₃Hg⁺ was internalized or taken up by both M. trichosporium OB3b and M. capsulatus Bath cells in 4 hours, leaving only a small percentage of the CH₃Hg⁺ in solution (Fig. 1B). These results are in contrast to the rapid export and little sorption of CH3Hg+ observed with known mercury methylators, such as D. desulfuricans ND132 (10, 31, 32), suggesting that both M. trichosporium OB3b and M. capsulatus Bath have a high affinity to sorb or take up CH₃Hg⁺.

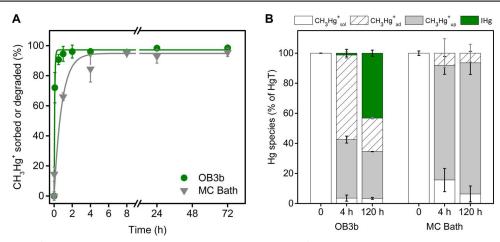


Fig. 1. Methylmercury (CH_3Hg^+) sorption, degradation, and species distribution. (A) CH_3Hg^+ sorption kinetics and (B) Hg species distributions (at 4 and 120 hours) by methanotrophs Hg. Hg to concentration (Hg) was 5 Hg to concentration (Hg) was 5 Hg to Hg to Hg to concentration was 108 cells Hg concentration was 108 cells Hg to Hg t

We found that, with increasing incubation time (120 hours), a substantial amount of CH₃Hg⁺ (~43%) was degraded and converted to inorganic Hg (IHg) by M. trichosporium OB3b, but not by M. capsulatus Bath cell (Fig. 1B). This observation was confirmed by additional detailed time- and concentration-dependent studies of CH3Hg+ degradation by both M. trichosporium OB3b (Fig. 2, A and B) and M. capsulatus Bath (Fig. 2, C and D). We found no demethylation at all with M. capsulatus Bath cultures, regardless of the reaction time (up to 120 hours) and CH₃Hg⁺ concentration (from 5 to 125 nM). However, CH₃Hg⁺ was degraded progressively by M. trichosporium OB3b with time and CH₃Hg⁺ concentrations up to 75 nM (Fig. 2, A and B). The pseudofirst-order rate constants at the initial CH₃Hg⁺ concentrations of 5, 25, and 75 nM were 0.017 (±0.001), 0.032 (±0.008), and 0.037 (±0.003) hour⁻¹, respectively, and approximately 55, 62, and 73% of the added CH₃Hg⁺ were degraded after 5 days. Again, CH₃Hg⁺ was converted to IHg (fig. S1A), but no gaseous Hg(0) was observed (fig. S1B). The amount of the cell-associated CH₃Hg⁺, particularly the adsorbed CH₃Hg⁺_{ad}, decreased with time, whereas the proportion of IHg increased with time. The produced IHg mostly remained inside the cell, with less than 6% of the IHg either left in solution or sorbed on the cell surface because Hg(II) is known to strongly sorb or interact with thiol functional groups of proteins and cellular materials (33). Note that, at the highest added CH₃Hg⁺ concentration (125 nM), the reaction rate decreased to 0.011 (± 0.001) hour⁻¹ (Fig. 2A), and demethylation was inhibited in the first 8 to 24 hours. However, with a longer incubation time (120 hours), the cells were able to recover and degrade a substantial amount of CH₃Hg⁺ (71%). This initially inhibited CH₃Hg⁺ degradation may be interpreted as a result of potential toxic effects of CH₃Hg⁺ on M. trichosporium OB3b, similar to that observed with Geobacter bemidjiensis Bem (17).

Because demethylation was observed neither in *M. trichosporium* OB3b spent medium (fig. S1B) nor in *M. capsulatus* Bath cultures (Fig. 2, C and D), the results signify that demethylation was biologically mediated and methanotroph strain specific. However, neither *M. trichosporium* OB3b nor *M. capsulatus* Bath contains a homolog of *merB* (encoding for the organomercurial lyase) in their genome, suggesting that CH₃Hg⁺ degradation by *M. trichosporium* OB3b relies on an as yet unknown mechanism and that this mechanism does not exist in *M. capsulatus* Bath.

To elucidate this mechanism, we first considered the fact that both *M. trichosporium* OB3b and *M. capsulatus* Bath are sensitive to the availability of copper. That is, the copper-to-biomass ratio is a key factor in regulating the expression of the following: (i) genes encoding for the soluble and particulate methane monooxygenases (MMOs), with soluble MMO only expressed in the absence of copper (25, 34); and (ii) genes encoding for the chalkophore methanobactin with expression greatest in the absence of copper (24, 25). Genes encoding for the chalkophore are found in *M. trichosporium* OB3b, but not in *M. capsulatus* Bath, which contains a different class of chalkophores (35). Furthermore, methanobactin from *M. trichosporium* OB3b has been found to bind Hg(II) and CH₃Hg⁺ (29) and may thus be involved in CH₃Hg⁺ degradation.

We subsequently investigated CH₃Hg⁺ degradation by M. trichosporium OB3b in the presence of a known MMO inhibitor, acetylene, but no apparent inhibitory effects were observed (fig. S2). We next considered CH₃Hg⁺ degradation by cells grown either in the absence (0 µM) or in the presence (1 μM) of copper. Although CH₃Hg⁺ degradation was observed under both conditions (Fig. 3 and table S1), greater degradation of CH₃Hg⁺ was evident in the absence than in the presence of copper. We then examined several mutant strains of M. trichosporium OB3b defective in methanobactin production (mbnA::Gm^r and $\Delta mbnAN$) (25) to determine whether methanobactin is directly involved in CH₃Hg⁺ degradation. We also examined two additional methanotrophs—one (Methylocystis strain SB2) makes methanobactin and the other (Methylocystis parvus OBBP) does not (36). Results show that Methylocystis strain SB2 degraded CH3Hg+, whereas all methanobactin mutants did not regardless of the culture conditions in the presence or absence of Cu²⁺ ions (Fig. 3 and table S1). In addition, no demethylation was observed with M. parvus OBBP. These findings strongly suggest that methanobactin plays a critical role in degrading CH₃Hg⁺.

Although methanobactin is clearly needed for CH₃Hg⁺ degradation by *M. trichosporium* OB3b, subsequent studies indicate that it is not sufficient. That is, when CH₃Hg⁺ was incubated with the purified methanobactin, no appreciable CH₃Hg⁺ degradation was observed in the same MOPS buffer used in whole-cell studies (fig. S3). This result suggests that methanobactin likely served as a carrier or as a binding agent for CH₃Hg⁺ in the cell where it is degraded by some as yet unknown

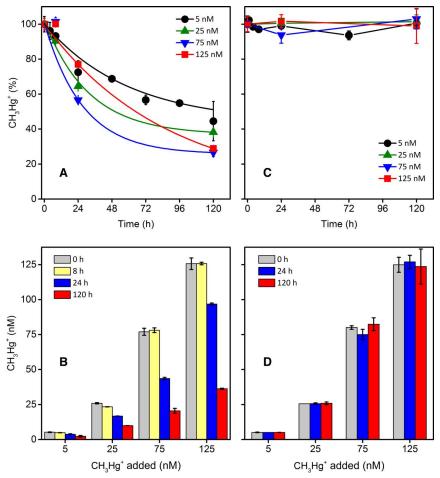


Fig. 2. Time- and concentration-dependent degradation of methylmercury (CH_3Hg^+) by methanotrophs. (A and B) *M. trichosporium* OB3b at 30°C and (C and D) *M. capsulatus* Bath at 45°C in 5 mM MOPS buffer. The added cell concentration was 10⁸ cells ml⁻¹ (washed), and the CH_3Hg^+ concentration was varied from 0 to 125 nM. Data points at 5 nM CH_3Hg^+ in (A) represent an average of replicate samples (10 to 15) from five independent batch experiments, and all other data points represent an average of triplicate samples. Error bars represent 1 SD from all replicate samples.

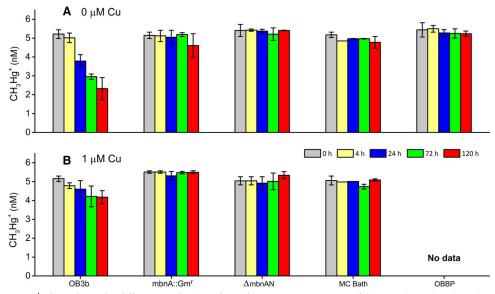


Fig. 3. Methylmercury (CH_3Hg^+) degradation by different methanotrophs and mutants. Comparisons of the time-dependent degradation of CH_3Hg^+ by washed cells of M. trichosporium OB3b and its mutant strains ($mbnA::Gm^r$ and $\Delta mbnAN$), M. capsulatus Bath, and M. parvus OBBP in 5 mM MOPS buffer. The added cell concentration was 10^8 cells ml^{-1} , and the CH_3Hg^+ concentration was ~ 5 nM. Data points represent an average of all replicate samples (3 to 15), and error bars represent 1 SD.

enzyme(s). We subsequently considered possible involvement of methanol dehydrogenase (MeDH), which is responsible for oxidation of methanol to formaldehyde in the central pathway of CH₄ oxidation, because *M. trichosporium* OB3b may take up CH₃Hg⁺ and use its methyl (–CH₃) group as a supplementary C1 source and energy. We found that addition of methanol (5 mM or higher) completely inhibited CH₃Hg⁺ degradation (fig. S4). This inhibition cannot be attributed to decreased metabolism of *M. trichosporium* OB3b because no inhibitory effects were observed in this organism even at methanol concentrations as high as 990 mM (*37*). The result suggests that MeDH, in conjunction with methanobactin, degraded CH₃Hg⁺, similar to the degradation of methanol where the methyl group is cleaved and possibly oxidized via this periplasmic enzyme. Hence, the methyl group of CH₃Hg⁺ may serve as an auxiliary C1 source for methanotrophs, as speculated by others (*19*).

In conclusion, we present evidence that strongly suggests the presence of a novel biological pathway of CH_3Hg^+ demethylation by methanotrophs, which warrants further investigation. This pathway is remarkably different from the canonical organomercurial lyase found in some aerobic microorganisms (13, 20). Unlike the organomercurial lyase in Hg-resistant bacteria, methanotrophs take up and degrade CH_3Hg^+ at environmentally relevant Hg concentrations (that is, picomolar to nanomolar). Methanotrophic-mediated CH_3Hg^+ degradation was also evident at circumneutral pH, unlike organomercurial lyase that has an optimal pH of ~10 (21). These findings suggest that methanotrophs may play an important role in controlling Hg transformation or net CH_3Hg^+ production and toxicity in situ, thereby providing new insights into as yet unknown but potentially widespread biological mechanisms of CH_3Hg^+ uptake and demethylation in the environment.

MATERIALS AND METHODS

The methanotrophs M. trichosporium OB3b and M. capsulatus Bath were grown in nitrate minimal salts medium at 30° and 45°C, respectively, either without added copper or with 1 μ M copper (as CuCl₂) (29, 38). Cells were harvested at the late exponential phase, washed once, and then resuspended in 5 mM MOPS buffer solution at pH 7.3. Methanobactin was isolated from M. trichosporium OB3b, as previously described (39).

Methylmercury (CH₃Hg⁺) sorption, uptake, and demethylation assays were conducted in 4-ml amber glass vials (National Scientific) by mixing washed cells with CH₃Hg⁺ in 5 mM MOPS buffer under ambient conditions. To determine whether MMOs were involved in CH₃Hg⁺ demethylation, we added 100 µl of acetylene to the headspace (through a septum) and allowed it to equilibrate with the cells first for 30 min in one subset of assays because acetylene is a strong and selective inhibitor of MMO activity (25, 40). CH₃Hg⁺ working solution (10 nM) was prepared by diluting 5 µM stock solution (CH₃HgOH in 0.5% acetic acid and 0.2% HCl from Brooks Rand Labs) in MOPS. The reaction was initiated by mixing 0.5 ml of CH₃Hg⁺ working solution with 0.5 ml of washed cells to give a final concentration of CH₃Hg⁺ at 5 nM and of cells at 1×10^8 cells ml⁻¹ (17), or otherwise specified. Samples were then placed on a rotary shaker, kept at 30°C for M. trichosporium OB3b and its mutants, and at 45°C for M. capsulatus Bath. Replicate sample vials were taken at selected time points and analyzed as follows. For CH₃Hg⁺ sorption (or uptake) analysis, triplicate samples were filtered through 0.2-µm syringe filters (to remove cells) and analyzed for CH₃Hg⁺_{sol} (17, 32). The unfiltered samples were used to determine the total Hg and total CH₃Hg⁺ (CH₃Hg⁺_{Total}) so that the cell-associated or total sorbed Hg can be calculated by their difference. For Hg species distribution analyses, six replicate samples (in separate vials) were taken,

and three of them were filtered as above and analyzed for total soluble Hg (Hg_{sol}) and CH₃Hg⁺_{sol} (17, 33). The remaining three samples were used to determine cellular uptake of CH₃Hg⁺ (CH₃Hg⁺_{up}) and cell surfaceadsorbed CH₃Hg⁺ (CH₃Hg⁺_{ad}). This was accomplished by adding 2,3dimercapto-1-propanesulfonic acid (DMPS), a Hg-chelating agent, at $150 \,\mu\text{M}$ to wash off the sorbed $\text{CH}_3\text{Hg}^+_{\,\,\text{ad}}$ at each time point and then analyzing CH₃Hg⁺ in filtered samples (17, 33), so that CH₃Hg⁺_{up} can be calculated by subtracting CH₃Hg⁺_{ad} and CH₃Hg⁺_{sol} from CH₃Hg⁺_{Total}. The inorganic IHg species, resulting from degradation of CH₃Hg⁺, were analyzed in the same manner, in which the adsorbed IHgad and cellular uptake of IHgup were determined following DMPS washing, and soluble IHg (IHg_{sol}) was calculated by subtracting $CH_3Hg^+_{sol}$ from Hg_{sol} (17, 33). Selected samples (before filtration) were determined for purgeable elemental Hg(0), but none was detected. Additional experiments were performed with cell spent medium and MOPS buffer as controls. Demethylation experiments were repeated at least once to ensure data quality, and error bars in all figures represent 1 SD of all replicate samples. Demethylation rate constants (k_{demeth}) were calculated on the basis of the pseudo-first-order rate law: $d[CH_3Hg^+]/dt = -k_{demeth}[CH_3Hg^+]$, where k_{demeth} was determined by the slope of the linear regression between natural logarithm of the CH₃Hg⁺ concentration and time (12, 41).

A modified EPA Method 1630 was used for CH_3Hg^+ analysis, in which isotope dilution with enriched $CH_3^{200}Hg^+$ was used as an internal standard, and an inductively coupled plasma mass spectrometer (ELAN DRC-e, PerkinElmer Inc.) was used to separate the various Hg isotopes to determine CH_3Hg^+ concentrations (17, 32, 33). The recovery of spiked CH_3Hg^+ standards was $100 \pm 10\%$, and the detection limit was about 3×10^{-5} nM CH_3Hg^+ . Gaseous Hg(0) was directly determined by inserting needles through the septa of the 4-ml glass vials and then purging with ultrapure N_2 for 2 min into a gaseous Hg(0) analyzer (Lumex 915+, Ohio Lumex). Total Hg and Hg_{sol} were analyzed via SnCl₂ reduction and detection by the Lumex analyzer after samples were oxidized in BrCl (5%, v/v) overnight at 4°C (11, 12, 42). The detection limit was ~2.5 × 10^{-4} nM.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/3/5/e1700041/DC1

table S1. Methylmercury degradation by washed cells of methanotrophs, including M. trichosporium OB3b and its two methanobactin (mb) defective mutants ($\textit{mbnA::} Gm^r$ and $\Delta \textit{mbnAN}$), Methylocystis strain SB2, M. capsulatus Bath, and M. parvus OBBP in 5 mM MOPS at pH 7.3. fig. S1. Methylmercury (CH $_3$ Hg $^+$) and inorganic mercury (IHg) species distribution during CH $_3$ Hg $^+$ degradation assays with M. trichosporium OB3b.

fig. S2. Effects of acetylene addition (as an inhibitor of MMOs) on methylmercury (CH₃Hg⁺) degradation by washed cells of *M. trichosporium* OB3b (10^8 cells ml⁻¹) in 5 mM MOPS buffer at 30°C. fig. S3. Reactions between methylmercury (CH₃Hg⁺, 5 nM) and purified methanobactin (1 μ M) from *M. trichosporium* OB3b in 5 mM MOPS buffer (pH 7.3) at 30°C.

fig. S4. Effects of methanol addition on methylmercury (CH₃Hg $^+$) degradation by washed cells of *M. trichosporium* OB3b (10^8 cells ml $^{-1}$) in 5 mM MOPS buffer at 30° C.

REFERENCES AND NOTES

- J. M. Parks, A. Johs, M. Podar, R. Bridou, R. A. Hurt, S. D. Smith, S. J. Tomanicek, Y. Qian, S. D. Brown, C. C. Brandt, A. V. Palumbo, J. C. Smith, J. D. Wall, D. A. Elias, L. Liang, The genetic basis for bacterial mercury methylation. *Science* 339, 1332–1335 (2013).
- M. Podar, C. C. Gilmour, C. C. Brandt, A. Soren, S. D. Brown, B. R. Crable, A. V. Palumbo, A. C. Somenahally, D. A. Elias, Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci. Adv. 1, e1500675 (2015).
- S. D. Smith, R. Bridou, A. Johs, J. M. Parks, D. A. Elias, R. A. Hurt Jr., S. D. Brown, M. Podar, J. D. Wall, Site-directed mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation. *Appl. Environ. Microbiol.* 81, 3205–3217 (2015).

- A. T. Schartup, P. H. Balcom, A. L. Soerensen, K. J. Gosnell, R. S. D. Calder, R. P. Mason, E. M. Sunderland, Freshwater discharges drive high levels of methylmercury in Arctic marine biota. *Proc. Natl. Acad. Sci. U.S.A.* 112, 11789–11794 (2015).
- 5. D. P. Krabbenhoft, E. M. Sunderland, Global change and mercury. Science 341, 1457–1458 (2013).
- 6. J. D. Blum, Marine chemistry: Marine mercury breakdown. Nat. Geosci. 4, 139–140 (2011).
- T. Barkay, I. Wagner-Döbler, Microbial transformations of mercury: Potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv. Appl. Microbiol. 57, 1–52 (2005).
- J. M. Benoit, C. C. Gilmour, A. Heyes, R. P. Mason, C. L. Miller, Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. *Biogeochem. Environ. Imp. Trace Elem.* 835, 262–297 (2003).
- J. A. Jay, K. J. Murray, C. C. Gilmour, R. P. Mason, F. M. M. Morel, A. L. Roberts, H. F. Hemond, Mercury methylation by *Desulfovibrio desulfuricans* ND132 in the presence of polysulfides. *Appl. Environ. Microbiol.* 68, 5741–5745 (2002).
- J. K. Schaefer, S. S. Rocks, W. Zheng, L. Liang, B. Gu, F. M. M. Morel, Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. *Proc. Natl. Acad. Sci.* U.S.A. 108, 8714–8719 (2011).
- H. Hu, H. Lin, W. Zheng, S. J. Tomanicek, A. Johs, X. Feng, D. A. Elias, L. Liang, B. Gu, Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. *Nat. Geosci.* 6, 751–754 (2013).
- H. Lin, J. L. Morrell-Falvey, B. Rao, L. Liang, B. Gu, Coupled mercury-cell sorption, reduction, and oxidation affecting methylmercury production by *Geobacter* sulfurreducens PCA. Environ. Sci. Technol. 48, 11969–11976 (2014).
- T. Barkay, R. R. Turner, A. Vandenbrook, C. Liebert, The relationships of Hg(II) volatilization from a fresh-water pond to the abundance of mer genes in the gene pool of the indigenous microbial community. Microb. Ecol. 21, 151–161 (1991).
- R. S. Oremland, C. W. Culbertson, M. R. Winfrey, Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation. *Appl. Environ. Microbiol.* 57, 130–137 (1991).
- R. S. Oremland, L. G. Miller, P. Dowdle, T. Connell, T. Barkay, Methylmercury oxidativedegradation potentials in contaminated and pristine sediments of the Carson River, Nevada. Appl. Environ. Microbiol. 61, 2745–2753 (1995).
- M. Marvin-DiPasquale, J. Agee, C. McGowan, R. S. Oremland, M. Thomas, D. Krabbenhoft, C. C. Gilmour, Methyl-mercury degradation pathways: A comparison among three mercury-impacted ecosystems. *Environ. Sci. Technol.* 34, 4908–4916 (2000).
- X. Lu, Y. Liu, A. Johs, L. Zhao, T. Wang, Z. Yang, H. Lin, D. A. Elias, E. M. Pierce, L. Liang, T. Barkay, B. Gu, Anaerobic mercury methylation and demethylation by *Geobacter bemidjiensis* Bem. *Environ. Sci. Technol.* **50**, 4366–4373 (2016).
- P. Sellers, C. A. Kelly, J. W. M. Rudd, A. R. MacHutchon, Photodegradation of methylmercury in lakes. *Nature* 380, 694–697 (1996).
- S. M. Baesman, L. G. Miller, J. H. Wei, Y. Cho, E. D. Matys, R. E. Summons, P. V. Welander, R. S. Oremland, Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment. *Microorganisms* 3, 290–309 (2015).
- J. B. Robinson, O. H. Tuovinen, Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: Physiological, biochemical, and genetic analyses. Microbiol. Rev. 48, 95–124 (1984).
- T. P. Begley, A. E. Walts, C. T. Walsh, Mechanistic studies of a protonolytic organomercurial cleaving enzyme: Bacterial organomercurial lyase. *Biochemistry* 25, 7192–7200 (1986).
- R. Bridou, M. Monperrus, P. R. Gonzalez, R. Guyoneaud, D. Amouroux, Simultaneous determination of mercury methylation and demethylation capacities of various sulfatereducing bacteria using species-specific isotopic tracers. *Environ. Toxicol. Chem.* 30, 337–344 (2011).
- M. Pester, M. W. Friedrich, B. Schink, A. Brune, pmoA-Based analysis of methanotrophs in a littoral lake sediment reveals a diverse and stable community in a dynamic environment. Appl. Environ. Microbiol. 70, 3138–3142 (2004).
- J. D. Semrau, A. A. DiSpirito, S. Vuilleumier, Facultative methanotrophy: False leads, true results, and suggestions for future research. FEMS Microbiol. Lett. 323, 1–12 (2011).
- J. D. Semrau, S. Jagadevan, A. A. DiSpirito, A. Khalifa, J. Scanlan, B. H. Bergman, B. C. Freemeier, B. S. Baral, N. L. Bandow, A. Vorobev, D. H. Haft, S. Vuilleumier, J. C. Murrell, Methanobactin and MMO work in concert to act as the 'copper-switch' in methanotrophs. *Environ. Microbiol.* 15, 3077–3086 (2013).
- 26. J. D. Semrau, A. A. DiSpirito, S. Yoon, Methanotrophs and copper. FEMS Microbiol. Rev. 34,
- H. J. M. Op den Camp, T. Islam, M. B. Stott, H. R. Harhangi, A. Hynes, S. Schouten, M. S. M. Jetten, N.-K. Birkeland, A. Pol, P. F. Dunfield, Environmental, genomic and taxonomic perspectives on methanotrophic *Verrucomicrobia*. *Environ. Microbiol. Rep.* 1, 293–306 (2009).

- B. S. Baral, N. L. Bandow, A. Vorobev, B. C. Freemeier, B. H. Bergman, T. J. Herdendorf, N. Fuentes, L. Ellias, E. Turpin, J. D. Semrau, A. A. DiSpirito, Mercury binding by methanobactin from *Methylocystis* strain SB2. *J. Inorg. Biochem.* 141, 161–169 (2014).
- A. Vorobev, S. Jagadevan, B. S. Baral, A. A. DiSpirito, B. C. Freemeier, B. H. Bergman, N. L. Bandow, J. D. Semrau, Detoxification of mercury by methanobactin from Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 79, 5918–5926 (2013).
- J. Benstead, G. M. King, H. G. Williams, Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils. *Appl. Environ. Microbiol.* 64, 1091–1098 (1998).
- C. C. Gilmour, D. A. Elias, A. M. Kucken, S. D. Brown, A. V. Palumbo, C. W. Schadt, J. D. Wall, Sulfate-reducing bacterium *Desulfovibrio desulfuricans* ND132 as a model for understanding bacterial mercury methylation. *Appl. Environ. Microbiol.* 77, 3938–3951 (2011).
- H. Lin, X. Lu, L. Liang, B. Gu, Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria. Environ. Sci. Technol. Lett. 2, 292–296 (2015).
- Y.-R. Liu, X. Lu, L. Zhao, J. An, J.- Z. He, E. M. Pierce, A. Johs, B. Gu, Effects of cellular sorption on mercury bioavailability and methylmercury production by *Desulfovibrio* desulfuricans ND132. Environ. Sci. Technol. 50, 13335–13341 (2016).
- J. D. Lipscomb, Biochemistry of the soluble methane monooxygenase. Annu. Rev. Microbiol. 48, 371–399 (1994).
- D. W. Choi, N. L. Bandow, M. T. McEllistrem, J. D. Semrau, W. E. Antholine, S. C. Hartsel, W. Gallagher, C. J. Zea, N. L. Pohl, J. A. Zahn, A. A. DiSpirito, Spectral and thermodynamic properties of methanobactin from gamma-proteobacterial methane oxidizing bacteria: A case for copper competition on a molecular level. J. Inorg. Biochem. 104, 1240–1247 (2010).
- S. Yoon, S. M. Kraemer, A. A. DiSpirito, J. D. Semrau, An assay for screening microbial cultures for chalkophore production. *Environ. Microbiol. Rep.* 2, 295–303 (2010).
- D. J. Best, I. J. Higgins, Methane-oxidizing activity and membrane morphology in a methanol-grown obligate methanotroph, *Methylosinus-Trichosporium* OB3b. *J. Gen. Microbiol.* 125, 73–84 (1981).
- W. Gu, M. Farhan Ul Haque, B. S. Baral, E. A. Turpin, N. L. Bandow, E. Kremmer, A. Flatley, H. Zischka, A. A. DiSpirito, J. D. Semrau, A TonB-dependent transporter is responsible for methanobactin uptake by *Methylosinus trichosporium* OB3b. *Appl. Environ. Microbiol.* 82, 1917–1923 (2016).
- N. L. Bandow, W. H. Gallagher, L. Behling, D. W. Choi, J. D. Semrau, S. C. Hartsel, V. S. Gilles, A. A. DiSpirito, Chapter seventeen—Isolation of methanobactin from the spent media of methane-oxidizing bacteria. *Methods Enzymol.* 495, 259–269 (2011).
- S. D. Prior, H. Dalton, Acetylene as a suicide substrate and active site probe for methane monooxygenase from *Methylococcus capsulatus* (Bath). *FEMS Microbiol. Lett.* 29, 105–109 (1985)
- 41. W. Zheng, H. Lin, B. F. Mann, L. Liang, B. Gu, Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions. *Environ. Sci. Technol.* 47, 12827–12834 (2013).
- B. Gu, Y. Bian, C. L. Miller, W. Dong, X. Jiang, L. Liang, Mercury reduction and complexation by natural organic matter in anoxic environments. *Proc. Natl. Acad. Sci.* U.S.A. 108, 1479–1483 (2011).

Acknowledgments: We thank X. Yin for Hg and MeHg analyses, Y. Liu and Z. Yang for technical assistance and discussion, and A. Johs for critical review of the manuscript. Funding: This research was sponsored by the U.S. Department of Energy (DOE) Office of Science, Office of Biological and Environmental Research, as part of the Mercury Science Focus Area at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under contract no. DE-ACO5-00OR22725 with DOE and grant no. DE-SC0006630 to J.D.S. and A.A.D. Author contributions: X.L., B.G., J.D.S., and A.A.D. designed the research. X.L., W.G., L.Z., and M.F.U.H. performed the experiments and analyses. B.G., X.L., J.D.S., and A.A.D. wrote the paper. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 4 January 2017 Accepted 30 March 2017 Published 31 May 2017 10.1126/sciadv.1700041

Citation: X. Lu, W. Gu, L. Zhao, M. Farhan Ul Haque, A. A. DiSpirito, J. D. Semrau, B. Gu, Methylmercury uptake and degradation by methanotrophs. *Sci. Adv.* **3**, e1700041 (2017).

Methylmercury uptake and degradation by methanotrophs

Xia Lu, Wenyu Gu, Linduo Zhao, Muhammad Farhan Ul Haque, Alan A. DiSpirito, Jeremy D. Semrau and Baohua Gu

Sci Adv 3 (5), e1700041. DOI: 10.1126/sciadv.1700041

ARTICLE TOOLS http://advances.sciencemag.org/content/3/5/e1700041

SUPPLEMENTARY MATERIALS http://advances.sciencemag.org/content/suppl/2017/05/26/3.5.e1700041.DC1

REFERENCES This article cites 42 articles, 16 of which you can access for free http://advances.sciencemag.org/content/3/5/e1700041#BIBL

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service