Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis

Yin Zhang,1,2* Jun Guo,1,2* Lin Shi,1 Yanfei Zhu,1 Ke Hou,1,2 Yonglong Zheng,1 Zhiyong Tang1†

A simple and effective strategy is developed to realize visible light–driven heterogeneous asymmetric catalysis. A chiral organic molecule, which only has very weak catalytic activity in asymmetric \(\alpha \)-alkylation of aldehydes under visible light, is utilized as the ligand to coordinate with different types of metal ions, including \(\text{Zn}^{2+}, \text{Zr}^{4+}, \) and \(\text{Ti}^{4+} \), for construction of crystalline metal organic frameworks (MOFs). Impressively, when used as heterogeneous catalysts, all of the synthesized MOFs exhibit markedly enhanced activity. Furthermore, the asymmetric catalytic performance of these MOFs could be easily altered by selecting different metal ions, owing to the tunable electron transfer property between metal ions and chiral ligands. This work will provide a new approach for fabrication of heterogeneous catalysts and trigger more enthusiasm to conduct the asymmetric catalysis driven by visible light.

INTRODUCTION
Asymmetric catalysis is of special interest in biochemistry, medicine, and environmental industry. Typically, heat and light are two major ways to provide the energy for promotion of varied catalytic reactions. Compared with thermal catalysis, photocatalysis (1) under solar light is characterized by green, sustainable, and low-cost production; hence, it is always the preferred option for asymmetric catalysis (2–5). In 2008, a pioneering work demonstrated visible light–driven asymmetric alkylation of aldehyde with the help of a chiral ligand and \(\text{Ru(bpy)}_3 \) electron mediator (6). Thereafter, a number of homogeneous asymmetric photocatalysts have been successfully implemented by using transition metal (7–19) or metal-free organic photosensitizers (20, 21), together with different chiral ligands in different systems under visible light irradiation. A significant advance in asymmetric photocatalysis is the combination of photoactive group and chiral center into one molecular catalyst, endowing the advantages of atomically economic structural design, effective photoinduced charge transfer, and convenient separation of products and catalysts. For instance, chiral center, catalytic site, and photoactive core all have been integrated at the iridium atom of a coordination complex to accomplish the photoinduced enantioselective alkylation of acyl imidazole (22). Another interesting example is that a chiral amine without a photosensitive group could successfully realize visible light–driven asymmetric alkylation of aldehydes via formation of a transient chiral donor-acceptor complex between catalyst and substrate (23, 24).

As for practical application, heterogeneous catalysts have attracted much more interest compared with homogenous ones because of their easy recovery and rapid reuse (25–30). Many semiconductors—such as \(\text{TiO}_2 \) (31–33), \(\text{PbBiO}_2\text{Br} \) (34), and \(\text{Bi}_2\text{O}_3 \) (35), together with a chiral ligand—have been examined in heterogeneous asymmetric photocatalysis. Unfortunately, this heterogeneous catalysis generally could not achieve high enantioselectivity due to difficulties controlling the surface composition and configuration of solid semiconductors. A plausible solution would be the uniform combination of photoactive groups and chiral centers in a porous crystalline material such as metal organic frameworks (MOFs). However, multifunction in a rigid framework poses a great challenge. Until now, only one study has demonstrated incorporation of three components, namely, zinc ion, stereoselective pyrrrolidin-2-ylimidazole, and photoredox 4,4′,4″-tricarboxytriphenylamine, into a MOF structure to catalyze the asymmetric \(\alpha \)-alkylation of aliphatic aldehyde (36). Nevertheless, much more work is needed, for instance, design of an organic ligand of both photoactive groups and the chiral center to simplify the preparation process and improve photoactivity efficiency (37) as well as exploitation of metal ions interacting organic ligands to further regulate catalytic performance (38–41).

Here, a novel strategy is adopted for construction of heterogeneous asymmetric photocatalysis. Chiral photoredox molecules are selected as ligands to coordinate with different metal ions for the formation of MOFs. When these MOFs are used for photocatalytic establishment of a new C–C bond and stereocenter, they exhibit high and adjustable activity that depends on selection of metal ions.

RESULTS AND DISCUSSION
It is clear that the synergistic effect between metal ions and a photoredox chiral ligand is the key to achieving highly efficient asymmetric catalysis (Scheme 1A). First, an organic chiral ligand that contains both a catalytic active site and a visible light absorption group is necessary to conduct photocatalytic asymmetric \(\alpha \)-alkylation of aldehydes driven by visible light. Keeping this in mind, we choose \(\text{N-(tert-butoxycarbonyl)-prolinal} \) (\(\text{N-Boc-prolinal}; \) II in Scheme 1B), derived from proline, in which a secondary amine group (it is initially protected by a Boc group to prevent deactivation during MOF formation process) activates the aldehyde substrates in an enamine mode, and a formyl group acts as the loop to connect with 2-aminoterephthalic acid (\(\text{H}_2\text{BDC-NH}_2 \); I in Scheme 1B). The rationale for conjugation with \(\text{H}_2\text{BDC-NH}_2 \) is two-fold: (i) The carboxylic acid group in \(\text{H}_2\text{BDC-NH}_2 \) is easy to coordinate with metal ions for MOF construction, and (ii) the phenyl group in \(\text{H}_2\text{BDC-NH}_2 \) might benefit the separation of photoinduced charge and thus improvement of photocatalytic performance. Scheme 1B outlines the synthetic route of chiral photoredox ligands. \(\text{S(R)-N-Boc-prolinal} \) (II) was first combined with \(\text{H}_2\text{BDC-NH}_2 \) (I) through a typical Schiff base condensation (42). Afterward, hydrogenation with \(\text{NaBH}_4 \) (43) was performed to obtain the amine–protected molecule \(\text{S(R)-Boc-HL} \) (IV) to avoid its unnecessary decomposition during purification and later deprotection process. Many characterizations based on nuclear
magnetic resonance (NMR) spectroscopy (figs. S1 to S5) confirm successful synthesis of S(R)-Boc-HL. We intentionally prepared a pure chiral ligand catalyst [S(R)-HL; V] to explore its inherent property toward visible light–driven asymmetric α-alkylation conveniently. Again, the results from NMR (fig. S6) and circular dichroism (CD) spectra (fig. S7) prove the successful preparation of the target S(R)-HL.

Next, three types of metal ions, including Zn$^{2+}$, Zr$^{4+}$, and Ti$^{4+}$, which are well known as metal centers in many MOFs, are used to construct MOFs via coordination with chiral Boc-HL. Fourier transform infrared (FT-IR) spectroscopy data (fig. S8) verify that formation of Boc-MOFs is mainly ascribed to the interaction between metal ions and carboxylic acid groups in S(R)-Boc-HL. Thermogravimetric analysis (TGA) is used to estimate the thermal stability of the Boc-MOFs (fig. S9). Finally, deprotection of Boc groups was carried out by applying a microwave heating method (36, 44) to empty the occupied channels to contact the substrates and recover the amine groups as catalytic centers. The corresponding products are named as Zn-MOF, Zr-MOF, and Ti-MOF. Scanning electron microscopy (SEM) imaging (fig. S10) and N$_2$ adsorption-desorption measurement are utilized to discern the shape and structure of the prepared catalysts.

Scheme 1. Basic illustration, ligand design, and synthesis. (A) Scheme of photocatalytic asymmetric α-alkylation of aldehyde by MOFs that are constructed with chiral photoredox ligands and metal ions. (B) Route to synthesize chiral photoredox ligands.

Fig. 1. XRD patterns of crystalline MOFs. (A to F) Zn-MOF (A), Zr-MOF (C), and Ti-MOF (E) before (black curves) and after (red curves) Boc group removal. Corresponding crystal structures of Zn-MOF (B), Zr-MOF (D), and Ti-MOF (F). In the crystal structures, metal ion is included in the polyhedron, oxygen atom is in red color, carbon atom is in brown color, and the ball in blue color represents a functional group with chiral induction and catalytic ability.
Note that FT-IR (fig. S14) analysis manifests successful removal of the Boc groups in MOFs after microwave heating. N\textsubscript{2} adsorption-desorption measurement on all three MOFs further demonstrates the evidently increased surface area and enlarged pore sizes of MOFs after removal of the Boc groups. In detail, the Brunauer-Emmett-Teller surface area and the pore size are 262 m2/g and 8.5 Å for Zn-MOF, 768 m2/g and 8.0 Å for Zr-MOF, and 1047 m2/g and 6 Å as well as 10 Å for Ti-MOF, which all are large enough to accommodate the substrates for catalysis.

Figure 1 (A, C, and E) presents the powder x-ray diffraction (XRD) patterns of the MOFs before (black curves) and after (red curves) removal of the Boc groups. It is evident that there remains no change in the XRD peaks after microwave heating. This result indicates that the deprotection from Boc-MOFs to MOFs experiences a single-crystal–to–single-crystal transformation without damage of spatial arrangement (44). According to XRD data, the crystal structure of Zn-MOF (Fig. 1A) agrees with that of classic MOF-5 (37), suggesting that Zn\textsubscript{4}O clusters are connected orthogonally to six terephthalate units (Fig. 1B). The crystalline nature of Zr-MOF (Fig. 1C) is the same as that of NH\textsubscript{2}-UiO-66 (45), and in the cubic framework, Zr\textsubscript{6}O\textsubscript{4}(OH)\textsubscript{4} works as nodes to link with chiral HL ligands (Fig. 1D). Ti-MOF (Fig. 1E) is isostructural to NH\textsubscript{2}-MIL-125(Ti) (46), which is built up from the cyclic octamer Ti\textsubscript{8}O\textsubscript{8}(OH)\textsubscript{4} and chiral HL linkers (Fig. 1F).

The colors of MOF products appear different to the naked eye, for instance, yellow brown for Zn-MOF, golden yellow for Zr-MOF, and orange for Ti-MOF powders (fig. S15); thus, qualitative evaluation of their optical absorption properties is performed by ultraviolet-visible (UV-vis) absorption spectroscopy. Compared with the starting material H\textsubscript{2}BDC-NH\textsubscript{2}, the absorption peak of chiral HL is red-shifted from 365 to 382 nm (Fig. 2A), implying more coverage in the visible region. When the chiral ligands are built in MOFs, the absorption peaks display further bathochromic shift to 389, 406, and 420 nm for Zn-MOF, Zr-MOF, and Ti-MOF, respectively (Fig. 2B). Similar red-shift phenomena have been reported in Zn-MOF-5 (47, 48), NH\textsubscript{2}-UIO-66 (49), and NH\textsubscript{2}-MIL-125(Ti) (50) systems, which are attributed to the ligand-to-metal charge transfer. Notably, different metal ions and ligands have varied interactions and, therefore, distinct optical absorption, endowing us the opportunity to efficiently exploit solar energy via versatile coordination chemistry (51–54).

The CD spectrum of chiral HL (Fig. 2C) exhibits two signals in the range of 200 to 300 nm. The peak at 204 nm is assigned to the transition absorption of the prolinal portion that can be proven by the CD spectrum of original Boc-prolinal (fig. S7B), whereas the other one at 238 nm...
corresponds to the transition absorption of H2BDC-NH2 part (fig. S7C). After incorporation into MOFs, the CD spectra become quite different (Fig. 2, D to F), and only the CD responses of proline parts remain. Together, the CD observation confirms the maintenance of chirality inside MOF products.

The photocatalytic activity of all of the synthesized MOFs is assessed by the reactions of asymmetric C–C bond formation via α-alkylation of aldehydes under visible light irradiation (Figs. S16 to S31). Table 1 summarizes the experimental results, from which several conclusions are drawn: (i) The S(R)-HL itself has rather weak catalytic activity under visible light (entries 1 to 4). When the S(R)-HL is used in the reaction, irradiation under high-energy light (200 W) affords a moderate conversion of 55% and an enantiomeric excess (ee) value of 74%, whereas less than 10% conversion is obtained when a 25-W output is adopted as the light source, which should be caused by the poor light absorption of chiral HL in the visible region. A similar result was reported (6) that a rather high conversion efficiency was obtained in the absence of Ru(bpy)$_2^{2+}$ light sensitizers when a high-energy UV irradiation (300 to 350 nm) was used. (ii) All the S(R)-Zn-MOF, S(R)-Zr-MOF, and S(R)-Ti-MOF exhibit markedly improved catalytic performance at 25-W illumination compared with chiral HL (entries 5 to 10). Furthermore, different MOF catalysts have distinct photocatalytic activity. It is reported that as a semiconductor, Zn-MOF-5 undergoes charge separation at a microsecond scale upon light excitation (37). However, the absorption of Zn-MOF in the visible portion is still small when irradiated by 25-W visible light, causing a rather low conversion of 40% and an ee value of 55% (entries 5 to 6). NH$_2$-MIL-125(Ti) is the most studied MOF (55–57) in the photocatalysis with visible light. It is known that the highest occupied crystal orbital (HOCO) of the Ti-MOF is localized at the organic linker, and the lowest unoccupied crystalline orbital (LOCO) is centered at Ti d-orbital to meet the spatial and energetic requirements, allowing for an efficient overlap. Ti$^{3+}$ species are easily formed upon irradiation by visible light, thus promoting a long-lived ligand-to-metal charge transfer (50). Because of these characteristics, the chiral Ti-MOF shows almost 100% conversion and a high 85% ee value under 25-W visible illumination (entries 9 to 10). In regard to chiral Zr-MOFs, a conversion of 46% and an ee value of 64% are obtained (entries 7 to 8). As for NH$_2$-UiO-66 with an optical bandgap of 2.75 eV, the photoinduced electrons by visible light could cause generation of Zr$^{4+}$ species via charge transfer from the excited ligand to Zr oxo clusters, but the d-orbitals in Zr are too low in binding energy and thus cannot overlap with the n* orbital of the ligand effectively, making both frontier orbitals localized more at the organic linker (58, 59). In general, the excitons in organic molecules are relatively short-lived, which result in lower catalytic activity. As a result, Zr-MOF displays better catalytic performance than Zn-MOF but much lower efficiency than Ti-MOF under similar visible light illumination. (iii) Comparative experiments indicate that the chiral catalytic reactions do not happen without visible light (entry 14, Table 1) or catalysts (entry 15). In addition, these reactions cannot occur with Boc-MOFs as catalysts due to the blockage of catalytically active amine groups (table S2). Among the tested solvents, dimethylformamide (DMF) is the best choice to achieve both high conversion efficiency and marked ee value (entries 12 to 13), which is reasonable considering that the photocatalytic potentials vary with different solvents (20). In addition, temperature has the influence on photocatalytic performance; for example, low temperature decreases the activity of Ti-MOF but raises the stereoselectivity (entry 11). (iv) The MOF heterogeneous catalysts demonstrate excellent stability and reusability, for instance, their crystalline structure and catalytic performance are well retained after three photocatalytic cycles (table S3 and fig. S31). (v) These novel MOFs show universality in asymmetric photocatalysis. As an example, good conversion and enantiomeric excess are achieved when another substrate cis-6-nonenal is used with S(R)-Ti-MOF (entries 16 to 17).

With the above facts, one can deduce that the photoinduced charge separation determines the catalytic efficiency of MOFs. First, substrate aldehyde diffuses into the cavities of MOFs, inside which aldehyde condenses with the amine group of a chiral ligand to form the enamine intermediate that is confirmed by FT-IR spectra (fig. S32) (6). Next, the chiral MOFs would accept a photon from a light source and cause charge separation, where the hole is located at the HOCO, and the electron reduces the metal ions (37, 51–54, 58, 59). Then, the electron is further transferred to the diethyl bromomalonate (fig. S35), resulting in recovery of metal ion, loss of bromide anion, and generation of α-carbonyl radical (36). Afterward, the α-carbonyl radical adds to the enamine to form an α-radical intermediate rapidly (6, 36). Finally,
the α-radical intermediate is oxidized by the hole located at HOCO, yielding the iminium ion that releases product and catalyst (33–35) into the next cycle via hydrolysis (scheme S3).

CONCLUSIONS
In conclusion, a new type of organic ligand integrated with chiral center and photoredox property is designed and synthesized successfully, which is further coordinated with different metal ions to construct chiral MOFs. When used as catalysts, these MOFs exhibit significantly improved conversion and stereoselectivity in asymmetric α-alkylation of aldehydes under visible light. Notably, photocatalytic performance can be tailored by using MOFs with varied metal ions. Detailed experimental observations and mechanistic investigations reveal that differences in optical absorption and charge separation among MOFs are the key to determining the photocatalytic performance. Our findings open a pathway for preparation of cheap but high-performance photocatalysts toward heterogeneous asymmetric catalysis.

MATERIALS AND METHODS

Standard photocatalytic operation
First, catalysts were weighed and added to a photoreaction vessel (10 ml) that was wholly wrapped with aluminum foil. To exclude the influence of oxygen, the vessel was then transferred into N2-fulled glove box. Subsequently, liquid substrates and 1 ml of anhydrous DMF were added and mixed thoroughly under magnetic stirring. Afterward, the vessel was sealed with a latex plug and transferred into a photoreaction box, where a light source and a magnetic stirrer were kept inside (fig. S16). To keep the temperature constant (20°C), the vessel was connected to a circulating condensation system during the whole reaction. Aluminum foil was then stripped off, and the reaction was initiated by turning on the lamp source. After stirring for 20 hours, the mixture was taken out and centrifuged at 10,000 rpm on a centrifuge for 5 min. After centrifugation, the remaining solids were washed twice with 2 ml of DMF and dried in a vacuum oven at 40°C before reuse; meanwhile, 10 μl of supernatant solution sample was injected into gas chromatography/mass spectrometry (GC-MS) to evaluate the conversion, and the remaining solution was concentrated in the vacuum oven. The obtained oil-like raw product was further purified by column chromatography using hexane/ethyl acetate as the eluent. Finally, 1H NMR was used to determine the ee value by following the reported general method (6).

Catalytic performance evaluation methods

Conversion ratio
The obtained supernatant was directly injected into GC-MS, and the result was calculated on the basis of the relative conversion ratio of diethyl bromomalonate because the aldehyde substrate was excessive. On the other hand, the absolute conversion value was obtained by separating the target products from the resultant supernatant using the column chromatography method. These two values are very close, and for simplification, all of the conversion ratios listed in Table 1 were calculated on the basis of GC-MS results. The experimental GC-MS condition was summarized as follows: The temperature of oven was kept at 50°C for 1 min and then increased to 220°C with a heating speed of 10°C/min, followed by a stay for 2 min. Capillary column was kept in He gas atmosphere all the time. The ionization source was electron ionization.

ee value
1H NMR was used to determine the ee value following a reported general method (6). Twenty milligrams of purified aldehyde product was added to a mixture of 8.5 mg (2S,4S)-(−)-pentanedioi (>99% ee) and 1.5 mg of p-toluenesulfonic acid hydrate in CH2Cl2 (1 ml). The aldehyde product would react with pentanedioi to generate diastereomeric acetals in the mixture, which was then concentrated in vacuum. After ascertaining complete consumption of the aldehyde (as judged by thin-layer chromatography analysis), the ee value of the as-formed diastereomeric acetals was determined by integration of two 1H NMR signals (both doublets) in CDC13.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/3/8/e1701162/DC1

Supplementary Text
scheme S1. Pathway to synthesize chiral Boc-HL.
scheme S2. Pathway to synthesize chiral HL.
scheme S3. Proposed reaction mechanism for visible light-driven asymmetric α-alkylation of aldehydes in the presence of chiral MOFs.
fig. S1. 1H NMR spectrum of 2-aminophenethyl acid.
fig. S2. 1H NMR spectrum of tert-butoxy-carbonyl-l-prolinol.
fig. S3. 1H NMR spectrum of Boc-HL without hydrogenation.
fig. S4. 1H NMR spectrum of Boc-HL.
fig. S5. 13C NMR spectrum of Boc-HL.
fig. S6. 1H NMR spectrum of HL.
fig. S7. Absorption spectra (200 to 500 nm) of chiral N-Boc-proline,(+)-pentanediol, and chiral HL.
fig. S8. FT-IR spectra of chiral Boc-HL, Boc-Zn-MOF, Boc-Zr-MOF, and Boc-Ti-MOF.
fig. S9. TGA of Boc-metal-MOFs.
fig. S10. SEM images of Zn-MOF, Zr-MOF, and Ti-MOF.
fig. S11. Nₐ adsorption-desorption isotherms of Boc-Zn-MOF and Zn-MOF.
fig. S12. Nₐ adsorption-desorption isotherms of Boc-Zr-MOF and Zr-MOF.
fig. S13. Nₐ adsorption-desorption isotherms of Boc-Ti-MOF and Ti-MOF.
fig. S14. FT-IR spectra of Boc-Ti-MOF and Ti-MOF.
fig. S15. Photos of catalysts, Zn-MOF, Zr-MOF, and Ti-MOF.
fig. S16. Photos illustrating the experimental process of photocatalysis.
fig. S17. GC-MS result for standard reaction in absence of light illumination.
fig. S18. GC-MS result for catalytic reaction with pure chiral HL at 20°C and under 25-W illumination.
fig. S19. GC-MS result for catalytic reaction with chiral Zn-MOF at 20°C and under 25-W illumination.
fig. S20. GC-MS result for catalytic reaction with chiral Zr-MOF at 20°C and under 25-W illumination.
fig. S21. GC-MS result for catalytic reaction with chiral Ti-MOF at 20°C and under 25-W illumination.
fig. S22. MS spectrum of 3-phenylpropanaldehyde.
fig. S23. MS spectrum of cis-6-nonenal.
fig. S24. MS spectrum of diethyl bromomalonate.
fig. S25. MS spectrum of product 1.
fig. S26. MS spectrum of product 2.
fig. S27. Reaction time-dependent conversion using Ti-MOFs as catalyst at 20°C.
fig. S28. Representative 1H NMR spectrum of pure racemic Ti-MOF (3-phenylpropanaldehyde as substrate).
fig. S29. Representative 1H NMR spectrum for determining ee value of the product obtained with racemic Ti-MOF (3-phenylpropanaldehyde as substrate).
fig. S30. Representative 1H NMR spectrum for determining ee value of the product obtained with R-Ti-MOF (3-phenylpropanaldehyde as substrate).
fig. S31. XRD patterns of chiral Ti-MOF after recycle use for three times.
fig. S32. FT-IR spectra of 3-phenylpropanaldehyde, Ti-MOF, and their mixture.
fig. S33. X-ray photoelectron spectroscopy spectra of Ti-MOF and mixture of Ti-MOF and diethyl bromomalonate.
fig. S34. FT-IR spectra of bromomalonate, Ti-MOF, and their mixture.
fig. S35. Diagram of energy level for alkyl bromide and Ti-MOF (versus saturated calomel electrode).

REFERENCES AND NOTES

21. T. Kundu, S. C. Sahoo, R. Banerjee, Relating pore hydrophilicity with vapo...

64. D. Sun, W. Liu, Y. Fu, Z. Fang, F. Sun, X. Fu, Y. Zhang, Z. Li, Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): A case study on M/NH2-MIL-125(Ti) (M=Pt and Au). Chemistry 20, 4780–4788 (2014).

Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis
Yin Zhang, Jun Guo, Lin Shi, Yanfei Zhu, Ke Hou, Yonglong Zheng and Zhiyong Tang

Sci Adv 3 (8), e1701162.
DOI: 10.1126/sciadv.1701162

ARTICLE TOOLS http://advances.sciencemag.org/content/3/8/e1701162
SUPPLEMENTARY MATERIALS http://advances.sciencemag.org/content/suppl/2017/08/14/3.8.e1701162.DC1
REFERENCES This article cites 65 articles, 3 of which you can access for free http://advances.sciencemag.org/content/3/8/e1701162#BIBL
PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.

Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).