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described, and with a few remarkable exceptions (25, 32, 33), the 
information capabilities of prokaryotic signaling pathways remain 
largely unexplored. Signal transduction in prokaryotes is mostly 
undertaken by one-component response regulators, proteins able to 
bind to specific molecules and modify gene expression accordingly 
(17). Here, we analyzed the ability of TetR, a canonical one-component 
regulator, to convey information about its cognate inducer, the 
antibiotic Tc.

The results showed that the TetR response against Tc was neither 
intrinsically digital nor analog but was heavily conditioned by the 
noise levels experienced by the signaling pathway. Noise filtering by 
negative feedback was key for the system to achieve a channel capac-
ity of 2 bits. While this channel capacity may not represent a marked 
increase over levels reported for other pathways, it was enough for 
the cell to discriminate between different antibiotic concentrations. 
The overall ability of TetR to quantify the signal may seem poor. 
However, one must take into consideration that sensors and trans-
ducing molecules are generally present at low copy numbers and that 
transcription factors are usually found in the nanomolar range. At 
these concentrations, noise is expected to severely constrain channel 
capacities, with upper limits predicted to be around 3 bits (34). While 

it is possible for the cell to improve information transmission by in-
creasing the concentration of sensors and transducing molecules, 
this strategy quickly leads to diminishing returns, demanding astro-
nomic investments to boost signal detection (2, 34). It is thus likely 
that the sensing ability of TetR and other cellular sensors is primarily 
constrained by cellular economy. The results showed that an NFL 
increased information transmission in TetR. Similarly, theory indi-
cated that a noncooperative NFL operating on the sensor optimizes 
the channel capacity of one-component response regulators. If econ-
omy is a critical factor limiting sensing precision, then the advantage 
of an NFL may be twofold. It not only increases information trans-
mission but also reduces the sensor concentration at the steady state 
when the signal is not present. An NFL operating on the sensor may 
thus increase information transmission while simultaneously reduc-
ing the metabolic burden imposed by the sensory pathway.

One of the key features of information transmission through the 
TetR circuit was its ability to discriminate antibiotic concentrations 
below the MIC (Fig. 5D). Sub-MIC antibiotic levels may not kill bacte-
ria, but this does not imply that they are innocuous. Subinhibitory 
antibiotic concentrations may damage the cell, decreasing the growth 
rate of susceptible populations (Fig. 5E). The sub-MIC selection 
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Fig. 5. Discrimination of sublethal antibiotic concentrations. (A) Output pA::GFP noise levels, expressed as variance divided by squared average achieved by the 
one-plasmid system. Values shown in the figure correspond to the circuit without feedback under arabinose or Tc induction (orange and gray lines, respectively) and to 
the circuit with NFL under Tc induction (green line) (inset: MI values observed in each experimental condition; x axis corresponds to the number of bins for the output). 
(B) Tc transfer function for pA::GFP (green line) and pR::TetRmkate2 (red line) (y axis, promoter induction levels, expressed as % of the maximum; x axis, Tc concentration, in 
g/ml). (C) Discriminative regions in pR/pA expression levels. White lines indicate boundaries between expression levels that unambiguously correspond to different Tc 
concentrations. (D) Model of pR/pA responses versus Tc concentration. Bars indicate percentage of cells located in each of the pR/pA regions, as Tc concentration in-
creases (right). (E) Correlation between Tc effect and pR/pA activation levels. Upper chart shows increases in the doubling time (y axis, in minutes), plotted against Tc 
concentration (x axis, in g/ml). Middle and lower charts show the percentage of cells showing values within pR and pA expression levels, respectively. (F) Channel capac-
ity optimization. Top: Experimental MI values (green line) compared to the theoretical channel capacity (red line) calculated by rate-distortion methods. Bottom: Experi-
mental output distribution (green bars) compared to optimal output distribution calculated by rate-distortion methods (red line).
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window comprises all antibiotic concentrations below the MIC that 
produce a fitness deficit big enough to promote the evolution of 
resistant strains (16). In E. coli, the minimal selective concentration 
for Tc was found to be 15 ng/ml (35). The minimal informative con-
centration in our experiments was 10 ng/ml. Thus, our results sup-
port the idea that TetR-mediated resistance is primarily aimed 
against sublethal antibiotic doses that directly impair cell growth. In 
the environment, antibiotics rarely achieve the concentrations used 
in the clinical setting, yet sub-MIC levels are frequent, as a result of 
widespread antibiotic contamination (36). Quantifying the signal 
also makes sense in the context of repeated exposure to subinhibito-
ry levels of antibiotic. Concentrations over the MIC are lethal; thus, 
their effect on fitness is likely to be close to binary (dead/alive), de-
pending on whether bacteria express resistance. In contrast, subin-
hibitory levels have an incremental effect on growth rates (Fig. 5E). 
Because TetA expression is known to be metabolically expensive (15), 
it may pay off for the cell to invest in a sensory system able to adjust 
resistance levels to the fitness deficit caused by different sub-MIC 
antibiotic concentrations. Testing this hypothesis is complicated 
by the need for precise methods to quantify the fitness distribution, 
in single cells, under sublethal antibiotic levels. If achievable, how-
ever, this analysis may shed light on the elusive relationship be-
tween the sensory power of the cell and its overall impact on cellular 
fitness.

MATERIALS AND METHODS
Bacterial strains
All bacterial strains used in this study were derivatives of E. coli 
K-12 and are listed in table S1.

Plasmid construction
Plasmid pRRG13 (fig. S1A, upper right side) was generated by in-
serting the tetA promoter region (pA) in front of the gfp gene in 
plasmid pUA66. Promoter pA was polymerase chain reaction (PCR) 
amplified from the Tn10 region of the natural plasmid R100 using 
oligonucleotides pTetA1XhoI and pTetA2BamHI. The resulting band 
was inserted in pUA66 using Xho I and Bam HI restriction endonu-
cleases. The TetRmkate2 fusion protein was generated by binding the 
N terminus of protein mKate2 to the C-terminal end of TetR 
through a flexible linker made of Ser-Gly-Gly-Gly-Gly peptide. For 
this purpose, we constructed plasmid pRRG54. Plasmid pRRG54 
was built by Gibson assembly out of three DNA fragments. The first 
one was the PCR product of amplifying mkate2 with primers isom-
katefusdir and isomkate_rev from plasmid pRAF33. The second frag-
ment was PCR amplified using primers isotetRfusrev and isotetRfus_
dir using plasmid R100 as template, and contained tetR. The third 
fragment was generated by linearizing expression vector pBAD33 
using Xba I digestion. Plasmid pRRG62 (fig. S1A, upper left side) 
was constructed by substituting the replication origin of pRRG54 
(p15A) with the replication origin of plasmid pSEVA121 (RK2). 
This way, we constructed an expression vector for TetRmkate2 with a 
lower plasmid copy number, which allowed us to control TetR ex-
pression more tightly. To generate plasmid pRRG62, TetRmkate2 was 
PCR amplified from pRRG54 using primers pbadseva1 and pbadseva2. 
The resulting band was digested with Pac I and Spe I restriction 
endonucleases and inserted in pSEVA121 (37). Plasmid pRRG63 
(fig. S1A) contains TetRmkate2 and its target promoter pA::GFP tran-
scriptional fusion. To generate this plasmid, pA::GFP was PCR 

amplified from plasmid pRRG13 using primers pua66terb1007 
and ptetAgfpkm_revPacI. This PCR fragment was inserted into 
plasmid pRRG62 using Pac I and Hind III restriction endonucleases. 
This way, the bidirectional transcriptional terminator BBa_B1007 
(http://parts.igem.org) was inserted, isolating TetRmkate2 and pA::GFP 
cistrons. In plasmid pRRG74, TetRmkate2 is expressed from promoter 
pR, while the pA::GFP fragment is located in the region occupied by 
pA::TetA in Tn10. Plasmid pRRG74 was generated by Gibson as-
sembly, fusing three DNA fragments. The first one included mkate2, 
amplified using oligonucleotides pRRG74_mkatedir and pRRG74_
mkaterev from plasmid pRAF22. The second one, containing the 
gfp gene, was amplified from pUA66 using primers pRRG74_GFPdir 
and pRRG74_GFPrev. Last, the third one contained the Tn10 re-
gion that includes tetR, pR, and pA. It was amplified from plasmid 
R100 using primers pRRG74_ptetArev and pRRG74_TetRrev.

Strain generation
Strain RRG112 was generated by transforming plasmids pRRG13 
(Kmr) and pRRG62 (Ampr) into E. coli BW27783 by electropora-
tion. Strains RRS113 and RRS129 were generated by transforming 
plasmids pRRG63 (Kmr, Ampr) and pRRG74 (Ampr), respectively, 
into E. coli BW27783 by electroporation. Strain RRS247 was gener-
ated by inserting the region comprising the araC to km genes (both 
included) from plasmid pRRG63 into E. coli chromosome. This way, 
strain RRS247 is the chromosomal counterpart of strain RRS113 
(fig. S1A). The DNA fragment was PCR amplified from RRS113 us-
ing primers AraC_Wanner and Km_AraD_Wanner. These primers 
contained a homologous region to the ara operon such that the am-
plified fragment could be recombined into E. coli TB10 strain fol-
lowing the protocol described in (38). A P1 lysate was then prepared 
and transduced to strain BW27783 to yield strain RRS247.

Culture conditions
Unless otherwise stated, bacterial growth for DNA extraction and 
strain propagation was performed in LB, and cells were grown at 
37°C, with orbital shaking and supplemented with appropriate an-
tibiotic concentrations. Antibiotic concentrations used were as fol-
lows: ampicillin (Amp; 100 g/ml), chloramphenicol (Cm; 25 g/ml), 
and kanamycin (Km; 50 g/ml). Arabinose induction for pBAD-
regulated constructions used the concentrations shown in Supple-
mentary Results and fig. S4, following the protocol described in (39).

DNA purification
Plasmid DNA was purified using the GeneJet Plasmid Miniprep Kit, 
following the vendor’s instructions. Total DNA was extracted using 
Bio-Rad’s InstaGene Matrix, following the vendor’s instructions.

Growth rate determination
Growth rates were determined by measuring the absorbance in a 
Victor3 (PerkinElmer) microplate reader. Cells were grown in M9 
medium supplemented with casamino acids [0.2% (w/v)] as nitro-
gen source and glycerol or glucose (0.5%) as carbon source. Cells were 
pregrown in flasks at 37°C overnight and then subjected to a 1:1000-
fold dilution in fresh medium. A total of 150 l of these diluted cul-
tures were added to the wells of a 96-well microtiter plate (Deltalab). 
Absorbance values at 600 nm were taken every 7 min. These absorb
ance values were background subtracted and transformed into OD600 
(optical density at 600 nm) values by using a calibrating curve ob-
tained with a Shimadzu UV-1603 spectrophotometer. Growth rates 
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() were obtained by fitting the growth curve between OD600 = 0.1 
and OD600 = 0.3 to an exponential. Doubling times () were obtained 
from growth rates as  = ln(2)/. When inducers were added to the 
growth medium (either arabinose or Tc), pre-inoculums were sup-
plemented with the same concentration of inducer to be tested.

Fluorescence microscopy
Cell cultures were pregrown overnight, starting from a 1:1000 dilu-
tion from a master glycerol stock. Cells were grown at 37°C in M9 
medium (Fluka-Sigma M9 salts supplemented with 100 M CaCl2, 
20 mM MgSO4, 0.2% casamino acids, and 0.5% glucose or glycerol). 
Appropriate concentrations of arabinose/glucose/glycerol/Tc were 
added according to the experimental requirements. Overnight satu-
rated cultures were diluted 1:1000 in the same medium and incu-
bated at 37°C for 2 to 3 hours until they reached OD600 = 0.1 to 0.2. 
Thus, cells were grown for approximately 16 generations in the 
same growth medium before their analysis by fluorescence micros-
copy. A total of 2 l of cells were placed onto agarose pads contain-
ing the same growth medium used for preimaging growth. Agarose 
pads were generated by stacking an adhesive frame (Frame-Seal 
Incubation Chamber, Bio-Rad) onto a microscope slide. In the cav-
ity formed by the adhesive frame, a volume of 200 l of hot M9 
medium + 1.5% agarose was added. Another microscope slide was 
placed over the frame immediately after pouring M9 + agarose to 
obtain a uniform and leveled gel. M9 medium used to generate agar 
pads was supplemented with the appropriate arabinose/glucose/
glycerol/Tc concentrations. Pads were allowed to cool down for 
30 min at room temperature, and then, using a sterile scalpel, a square 
of about 0.25 cm2 of the agarose gel was cut. The rest of the agarose 
pad was removed, and 2 l of the appropriate culture was placed on 
top of the pad. The culture droplet was allowed to dry for approxi-
mately 5 min, and then, a coverslip was placed over the frame, seal-
ing it carefully. Sealed pads were transferred to the slide holder of a 
Leica AF6500 inverted epifluorescence microscope, inside an envi-
ronmental chamber that was kept at 37°C along the course of the 
experiment. Cells were allowed to adapt to the pad and temperature 
for 30 min before we started to image. Images were acquired with 
×630 magnification using HCX PL S-APO 63× 1.3 oil objective. We 
acquired images in phase contrast and in the green and red fluores-
cence channels. Filters used for fluorescence images were 562/40-nm 
excitation and 641/75-nm emission for mKate2 and 482/18-nm ex-
citation and 520/28-nm emission for GFP. A Leica EL6000 external 
light engine, equipped with a mercury vapor lamp (HXP Short Arc 
Lamp, Osram), was used for fluorescence excitation. All images were 
obtained using the excitation lamp at maximum power. Images were 
acquired using a 12-bit Andor iXon885 high-speed camera, without 
binning. For red fluorescence images, we used two exposure times 
(500 ms and 2 s) in all images taken. For the green fluorescence 
channel, variable exposure times were applied (10 ms, 100 ms, and 
1 s). To avoid fluorescence bleaching from previous exposures, snap-
shots were taken at least four fields of view away from each other. 
Linearity of the fluorescence emission with exposure time was 
checked using a set of predefined fluorescence beads (Rainbow Flu-
orescent Particle Slide, Spherotech) (fig. S1B).

Image analysis
Images were acquired using LAS AF software (Leica) and exported 
to TIF format. All image analysis procedures were performed using 
Matlab (MathWorks). First, a flat-field correction was applied to 

compensate for field curvature. For this purpose, at least 10 empty 
field images were taken using the same microscope and camera 
configurations used later in the corresponding experiment. Images 
were then averaged, and a correcting matrix was generated. This 
correcting matrix was applied on a second set of empty field images 
to check that it produced a flat field (fig. S1B). This correcting 
matrix was then used on the experimental images to correct for field 
curvature. Cell segmentation was generated from phase images us-
ing MicrobeTracker (40). Algorithm parameters were fine-tuned to 
obtain the best segmentation mask possible. Manual curation was 
nevertheless necessary, so each frame was manually corrected to 
guarantee proper segmentation masks. From these segmentation 
masks, we extracted cell length, area, and fluorescence intensities in 
all relevant channels. Cell size was used as a proxy to check the uni-
formity of growth conditions. For this purpose, cell size histograms 
were generated for all frames. Frames that produced cell size histo-
grams 1 SD outside the norm were discarded. Fluorescence shift 
with respect to phase images was checked by manually curating 
a set of segmentation masks and then comparing its resulting val-
ues to the original ones obtained without shift correction. Fluores-
cence values were background subtracted using MicrobeTracker 
algorithm (40). Fluorescence intensities were generated by normaliz-
ing fluorescence values by their corresponding cell area and expo-
sure time. All fluorescence intensities are thus reported in arbitrary 
units/(ms × m2).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/11/eaat5771/DC1
Supplementary Results
Supplementary Calculations
Fig. S1. Genetic constructions used in this work and signal calibration.
Fig. S2 Validation of TetRmkate2 translational fusion.
Fig. S3. Induction of TetRmkate2 from pBAD.
Fig. S4. TetRmkate2 induction histograms are gamma distributed.
Fig. S5. Average responses and noise levels in arabinose-inducible constructions.
Fig. S6. Output distributions and MI for equiprobable, arabinose-induced inputs.
Fig. S7. Influence of feedback cooperativity on MI.
Table S1. Bacterial strains and bacteriophages used in this work.
Table S2. Oligonucleotides used in this work.
Table S3. Bacterial plasmids used in this work.
Table S4. List of reagents used in this work.
Table S5. Image data depository.
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