












Fig. 5. Single-cell level correlations in Msn2 nuclear localization frequency between the first and second generations of a cell. (A to C) Correlations emerge as
stress intensity is increased, with the correlation coefficients equal to 0.43 (P = 4.2 × 10� 4) and 0.59 (P = 2.25 × 10� 7) in 0.25 and 0.1% glucose, respectively. No
significant correlation was observed in the case of 2% glucose (P = 0.13). One generation duration for a cell was defined as the time interval between the start of
two consecutive S phases in a cell.
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high enough (as in the case of 0.1% glucose), the decreasing trend was
detectable despite the counteracting effects of noise.

Thus, our results indicate that glucose limitation stress increases
not only themagnitude of similarity in spike patterns but also the extent
to which they persist in progenies of ancestor cells. We note that our
findings about how individual cells modulate their localization spike
pattern in a partially synchronous fashion (Fig. 7) may provide an ex-
planation for why an overall reduction was observed in the CV of the
localization frequencies with increasing stress intensity (Fig. 3E).

What might be the mechanism behind the spike pattern similarity
across the progenies of ancestor cells? Inheritance of cellular phenotypes
has previously been observed in different biological contexts (31, 32).
Specific signaling network topologies can facilitatemechanisms through
which phenotypic variations are altered with effects on propagation of
phenotypes overmultiple cell divisions. For instance, removal of phos-
phatase Msg5, which is involved in a negative feedback loop in the
MAPK cascade, caused increased population variability and decreased
mother-daughter correlations (31). As another example, in an engineered
galactose utilization network where cells switch between OFF and ON
expression states, pairs of closely related cells were found to switch in
near synchrony even after several generations since the cells’ physical
separation (32). Using a model, these results were explainable by
burst-like fluctuations in the levels of a regulatory protein of the ga-
lactose network. In our system,Msn2 localizes to the cytoplasm through
phosphorylation by upstream PKA. The similarity of spike patterns in
progenies is attributable to the PKAactivity transferred betweenmother
and daughter cells and/or chromatin configurations being passed on to
progenies during cell division. Future studies will demonstrate whether
or not nongenetic inheritance of network activity levels is a common
phenomenon and will elucidate the specific mechanism(s) through
which the inheritance could be facilitated in various networks.

Correlation analysis between Msn2 localization features and
cellular growth rate
We next measured the degree of correlation between the frequency or
amplitude of Msn2 nuclear localization and the single-cell growth rate.
Growth rate of each single cell was calculated based on its doubling
times across the movie. Similarly, the Msn2 localization frequency
and amplitude for the same cell were separately calculated and averaged
across the movie. Next, cells were binned with respect to their growth
rates, and correlations between growth rates and frequency or am-
plitude for each bin were calculated (fig. S18). We saw that the Msn2
localization frequency was correlated with growth rate in stressful
environments [with the correlation coefficients equal to 0.829 (P <
0.05) and 0.861 (P < 0.05), in 0.25 and 0.1% glucose, respectively], while
no significant correlation was observed between localization amplitude
and growth rate. Despite seeing a high degree of correlation between
the Msn2 localization frequency and growth rate, we did not observe
a strong linear relationship between the two, as reflected by non-
steep slopes of the linear relationships shown in fig. S18A.

Measuring Msn2-regulated promoter activity in single
yeast cells
To understand the physiological consequences of the Msn2 nuclear
localization dynamics at the gene expression level, we measured the
activity of an Msn2-regulated synthetic promoter driving CFP every
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60min together with the YFP and bright-field images captured in the
same cells every 2.5 min. Cells exhibited heterogeneous CFP expres-
sion over time, with the overall magnitude of the expression increasing
with increased glucose limitation stress (Fig. 8A). Next, we wanted to
assess how the three different dynamical features of the Msn2 nuclear
localization contributed to the resulting gene expression behavior. For
this, we first sectioned each cell’s Msn2 localization trajectory into
windows of 60 min (as the frequency of CFP snapshots was every
60 min) and calculated the average Msn2 localization amplitude, du-
ration, and frequency for each window. Using these measured values,
we then applied a regression analysis method called Lasso (least abso-
lute shrinkage and selection operator) to obtain a quantitative estimate
Chatterjee and Acar, Sci. Adv. 2018;4 : e1701775 18 April 2018
of the contribution (1 corresponding to 100% contribution) of each
dynamical feature of theMsn2 localization signal on themeasured CFP
levels (Supplementary Materials). Results from this analysis (Fig. 8B
and fig. S19) supported our previous conclusions in terms of the relative
“importance” of the three Msn2 nuclear localization features. The am-
plitude and frequency of the Msn2 localization signal were the main
contributors to gene expression activation in the presence of stress
(0.1 and 0.25%glucose). This result was robust to the choice of threshold
used for quantifying Msn2 localization events (fig. S20). Regarding the
analysis of data obtained from the 2% glucose environment, the low sig-
nal levels and the noise prevented a faithful Lasso analysis on the data;
therefore, we excluded the 2% glucose environment from this analysis.
Fig. 6. Heritability of localization features of Msn2. (A) Left: Example of a lineage tree to the third generation. Three generations down, starting from the ancestor
cell, give rise to eight cells in different genealogical positions of the tree. Right: All the M-D cell pairs (orange boxes), GM-GD cell pairs (blue boxes), and reference cell
pairs (gray boxes) that can be obtained from the lineage tree of three generations. Boxes arranged diagonally do not correspond to pairs with unique cell labels, and
hence do not belong to either of the three categories. (B) Normalized dissimilarity index of Msn2 burst amplitude between M-D, GM-GD, and reference cell pairs for
each glucose concentration. (C) Normalized dissimilarity index of Msn2 burst frequency between M-D, GM-GD, and reference cell pairs for each glucose concentration.
(D) Normalized dissimilarity index of Msn2 burst duration between M-D, GM-GD, and reference cell pairs for each glucose concentration. Error bars represent SEM. Table
S6A gives a list of all the P values obtained by comparing amplitude, frequency, and duration of Msn2 localization between M-D pairs, GM-GD pairs, and reference pairs
for each glucose concentration.
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To assess if the experimental measurements of Msn2 nuclear
localization amplitude and frequency can predict the transcriptional
activitymeasured from the PSTRE-CFP construct, we used a linear state-
spacemodel, which represents the dynamics of CFP expression using
a first-order linear system (Supplementary Materials). Training the
model with our data and using it for predictions, we showed that the
experimental CFP expression trajectories can be explained by a linear
relationship between Msn2 nuclear localization amplitude, localization
frequency, and a noise term representing noise in gene expression
(Fig. 8C, figs. S21 to S24, and table S9). In the high stress environment
we set up (0.1% glucose), the phenotypic consequence of Msn2 nuclear
localization was an approximately linear increase in the average CFP
expression followed by a saturation regime (Fig. 8C, bottom panel),
while in the 0.25% glucose environment we observed an approximately
flat CFP trend followed by a slight increase in CFP at later time points
(Fig. 8C, top panel). The relatively higher CFP expression observed in
the 0.1% glucose environment is a reflection of the higherMsn2 nuclear
localization frequency and amplitude measured in this environment
(Figs. 3 and 4). While the frequency and amplitude of Msn2 nuclear
localization events observed in the 0.25% glucose environment (Figs.
2 to 4) were not as high as the ones observed in the 0.1% glucose
Chatterjee and Acar, Sci. Adv. 2018;4 : e1701775 18 April 2018
environment, the events still were more frequent than the ones ob-
served in the 2% glucose environment. The relatively flat CFP expres-
sion trend we measured in the 0.25% glucose environment (Fig. 8C)
indicates that the effect of the PKA signaling on downstream gene
expression is operating near the basal regime, if not truly in the basal
regime due to the presence of the increasing CFP levels at later time
points (Fig. 8C, top panel). We interpret the sporadic Msn2 nuclear
localization measured even in the 2% glucose environment as a
reflection of the stochasticity inherent in the cascade of molecular
interactions in the PKA system.
DISCUSSION
Performing extendedmeasurements on dynamical systems, as opposed
to observing them for shorter time periods, often provides more com-
prehensive understanding of system behavior. For example, following
Msn2 nuclear localization dynamics over a shorter time period of ap-
proximately one cell generation, a previous study (9) has found that
yeast cells responded to glucose limitation stress by displaying frequen-
cy modulation followed by a transient duration modulation. Here, by
following longer-term dynamics of Msn2 localization in response to
Fig. 7. Inheritance of dynamical patterns of Msn2 localization. (A) Pattern of Msn2 localization spikes between a mother and daughter cell in 2% glucose (top) and
0.1% glucose (bottom). Dashed blue lines denote the time at which the mother cell divides. Dashed black lines denote simultaneous localization spike events between
the mother and daughter. P(Y) and P(X) quantifies the probability of exhibiting an Msn2 localization spike, following the birth of the daughter, in a mother cell and
daughter cell, respectively. P(X,Y) quantifies the probability that the mother and daughter cell pair shows Msn2 localization spikes simultaneously. (B) Similarity in
pattern of Msn2 localization spikes in M-D, GM-GD, GGM-GGD, and reference cell pairs for different glucose concentrations. Here, reference cell pairs are all pairs of cells
that are not linked by mother-daughter, mother-granddaughter, or mother–great granddaughter relationships. The metric used to compute the abovementioned
similarity provides a quantitative measure of how often mother and daughter exhibit synchronous occurrence of spikes. Error bars were obtained from bootstrapping.
Table S8A gives a list of all P values obtained by comparing similarity of Msn2 spikes between M-D, GM-GD, GGM-GGD, and reference pairs for each glucose concen-
tration.
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glucose limitation stress, we found that cellsmodulate both the frequen-
cy and amplitude of theMsn2 nuclear localization.We also showed that
Msn2 localization frequency was epigenetically inherited in progenies,
while localization amplitude and duration did not display inheritance.
Between our work and the previous study (9), in addition to the dif-
ferences in time periods and the number of cell generations followed,
our using a new localizationmetric to determineMsn2 nuclear localiza-
tion events might also have contributed to the differences in results re-
lated to the Msn2 localization amplitude and duration.

Despite the simple nature of the previous localization metrics [for
example, averaging the top 10 or 15 brightest pixel intensities in a cell
Chatterjee and Acar, Sci. Adv. 2018;4 : e1701775 18 April 2018
(8, 28)] commonly used to estimateMsn2 nuclear localization intensity
without using a nuclear marker, our results show that such metrics can
give rise to large errors in estimating the true Msn2 nuclear localization
intensity in a cell. A new nuclear marker–free method we introduced
and validated in this study significantly increased the accuracy of local-
ization estimations compared to a previously usedmetric (even forweak
nuclear localization signals).

Here, the need to take frequent YFP images (every 2.5min) andCFP
images (every 60min) throughout the entire durations of the experiments
led to increases in cell doubling times. For each of the three glucose con-
ditions, microscopically measured doubling times were roughly 40 min
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Fig. 8. Genealogical gene expression dynamics in single cells and a quantitative model linking Msn2 nuclear localization to downstream gene expression.
(A) Heat map of CFP expression in single cells collected in a lineage-dependent manner from one experiment in 2% glucose (top), 0.25% glucose (middle), and 0.1%
glucose (bottom). Each row represents CFP expression of a single cell. Genealogical position of a cell in the family tree is labeled to the right of a row. Color bar shows
the intensity of CFP signal (a.u.). (B) Quantification of relative contribution of the three different Msn2 localization features on CFP expression using Lasso. Amplitude
and frequency of Msn2 nuclear localization were found to be the major features affecting CFP expression. (C) Prediction results for CFP expression for 0.25% (top) and
0.1% (bottom) glucose conditions using a linear state-space model. CFP levels were measured in single cells at every 60 min and normalized by the average CFP
expression obtained from all cells grown in the 2% glucose condition. Blue square at a given time point represents the average CFP expression across all cells at that
time point. Blue shaded area denotes the SEM (n = 8 to 67) calculated from all cells at each time point and extended between 60-min intervals as guide to the eye. The
red points denote the CFP expression predicted by the model (at each 60 min) and averaged for all cells at that time point (red lines connecting red points during the
60-min intervals are guide to the eye). Model identification and prediction is discussed in more detail in the Supplementary Materials.
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longer compared to the doubling times measured from batch culture
experiments performed in a shaker-incubator (tables S1 and S2). While
it is hard to estimate the level of phototoxicity based on doubling time
extensions alone, we acknowledge that the cells likely experienced
phototoxicity under the microscope, the level of which was possibly
the same across the three glucose conditions due to the observed sim-
ilarity in the extent of doubling time increase.

When information from external stimuli is transmitted through
a regulatory cascade, genetic noise can cause information loss. Unless
cells use strategies to surmount such challenges, the loss of information
could lead to suboptimal decision-making by the cell (33–36). Potentially
reflecting an evolutionary optimization strategy, we found that the
Msn2 nuclear localization frequency (the only epigenetically inherited
phenotype) displayed stress-dependent variability. In other words, the
CV decreased with increasing stress levels. This can be considered as
a beneficial strategy asmore cells, and their descendants, would show
high-fidelity localization-frequency response in harsh environments.
Further, stressful environments are also known to invoke large-scale
changes in transcriptional responses as well as in the activity of chroma-
tin remodeling proteins in cells (37, 38). Our work showed that mother
and daughter cells exhibit similar pattern of Msn2 localization spikes. If
these spikes are propagated downstream to activate gene expression, it
may be possible that the target promoters of mother and daughter cells
could also be activated in a synchronous manner. Inheritance of the
stress-responsive phenotypes may allow cells to adapt faster compared
to the responses orchestrated by genetic changes. Investigation of stress
response dynamics in single cells and their progenies over long time
scales thus provides a rich spectrum of information, helping us under-
stand cross-generational response strategies cells implement to better
cope with environmental uncertainties.
 on A
pril 22, 2019
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MATERIALS AND METHODS
Strain construction
All experiments in this studywere performedusing a yeast strain (which
we namedMC01) constructed for a previous study (9) and provided to
us by theO’Shea Laboratory. The strain was constructed from anADE+

strain inW303 genetic background (MAT a trp1 leu2 ura3 his3 can1
GAL+ psi+), using standardmethods for growth, transformation, and
DNA manipulation of yeast. Msn2 was tagged with yECitrine (39) by
polymerase chain reaction amplifying yECitrine::HIS3MX fragment
integrated in the C terminus of Msn2 by homologous recombination
at the native locus. As a reporter for gene expression, a synthetic
promoter containing six tandem STREs (CAAGGGG) and 218 base
pairs of CYC1 controlled expression of yECFP (39). Msn4, the partially
redundant homolog ofMsn2, was deleted from the strain. The C termi-
nus of Nh6pa, a nuclear protein, was tagged with mRFP (monomeric
red fluorescent protein) (40) tomark the nucleus.We did not image the
nuclear marker in the strainMC01 for any lineage-based time-lapse ex-
periment. The nuclear marker in this strain was used only in figs. S5 to
S8 and S10, for the purpose of validating the accuracy of our algorithm
in estimating nuclear localization of Msn2 from whole cell.

Time-lapse microscopy experiments using a
microfluidic platform
All single-cell measurements were made by combining microfluidics
with time-lapse fluorescence microscopy movies on strain MC01. A
customizedmicrofluidic chip of height 4 mmwasmade using standard
techniques of plasma etching followed by replica molding with poly-
Chatterjee and Acar, Sci. Adv. 2018;4 : e1701775 18 April 2018
dimethylsiloxane (PDMS). Yeast cells were grown overnight in a
shaking incubator at 30°C for 18 hours in either 2, 0.25, or 0.1% glu-
cose, depending on the magnitude of stress to be applied, to a final
OD600nm (optical density at 600 nm) of 0.1. Exponentially growing
cells were loaded into the microfluidic chip, already pretreated with a
solution of concanavalin A, CaCl2, and MnCl2. Constant media flow
was maintained throughout the length of an experiment. The micro-
fluidic chipwasmounted on the stage of aNikon invertedmicroscope,
with bright-field and YFP images being acquired every 2.5 min using a
60× oil immersion objective. Full details of experimental protocol
followed to perform a time-lapse movie using the microfluidic chip
are given in the Supplementary Materials.

Image analysis
The boundary of each cell was first traced, and assigned with a unique
ID, usingNikon Elements software. Formeasurement ofMsn2 localiza-
tion, a three-image z-stack of ±1.4 mmaround the focal plane in the YFP
channel was combined usingmaximum intensity projection (Max IP)
of the three z planes. The Max IP images were then fed to a custom-
written image analysis algorithm using MATLAB, which estimated the
average nuclear intensity of Msn2 from the whole cell. Msn2 localiza-
tion in a cell was defined as the average intensity of YFP pixels in the
estimated nucleus divided by the average intensity of YFP pixels in the
whole cell. CFP images were acquired every 60 min only at the focal
plane (a single z plane), and the average CFP pixel intensity across the
whole cell area was quantified. Full details of image analysis are given in
the Supplementary Materials. Msn2 localization time series for every
cell was thresholded at 1 SD of the mean of the localization traces ob-
tained for cells induced with 2% glucose. Five replicates of 2% glucose
experiments were used for determination of this threshold. Except for
fig. S2, all figures throughout this study included analysis from data
pooled from five independent experiments for each glucose concentra-
tion. For fig. S2, we first analyzed each of the five experiments’ data sep-
arately and calculated the associated growth rate, followed by averaging
the resulting growth rates across five experiments.

The birth of the daughter cell is defined as the time when the
mother-daughter separation occurs. The separation of a daughter from
its mother was determined based on the narrowing of the bud neck and
formation of a dark line between mother and daughter in a bright-field
image (41). While bud-to-bud intervals were used as a representative of
the cell cycle in the absence of a cytokinesis marker, we opted to start
the first generation of each newborn cell from their birth. We used
the approach described above to find the time point at which a daughter
cell is called an independent cell (separated from its mother). Despite
the relatively lower accuracy of this approach compared to the visible
cue provided by bud initiation, it was still preferable compared to the
alternative inwhich the firstG1 phase of a newborn cellwould be omitted.

Time-dependent analysis of inheritance of Msn2 amplitude
Analysis of similarity in amplitude of Msn2 localization between
M-D and GM-GD cell-pairs was adopted with modifications from
Geva-Zatorsky et al. (29). In case of M-D pairs, analysis between any
mother and daughter cell pair was performed relative to the birth
of the daughter cell. This means that for the mother cell’s trajectory,
we focused only on the time interval between the time at which the
daughter cell septated from its mother cell and the end of the experi-
ment. Let this be denoted by tM. For the corresponding daughter cell,
the time interval of interest is the entire time trajectory that is simply the
time interval between its birth and endof experiment, anddenoted by tD.
11 of 13
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In the case of GM-GD pairs, we focus only on an interval of time be-
tween the birth of the granddaughter and the time at which the exper-
iment ends (tGM). For the granddaughter cell, it is the entire time
trajectory beginning from its birth to end (tGD). For a given M-D
(or a given GM-GD) cell pair p, both cell’s time series, tM (or tGM)
and tD (or tGD), were first ranked in ascending order of Msn2 local-
ization and then normalized by the highest value of Msn2 localization
to bring each ranked time series data in a range of [0,1]. At each time
point, the absolute difference in normalized rank value between the
mother (or grandmother) and daughter (or granddaughter) was cal-
culated to generate another time series [Dp(t)] representing a mea-
sure of dissimilarity between thatM-D pair p over time.Dp(t), obtained
from every M-D (or GM-GD) pair, was then averaged over all such
pairs. This quantified how dissimilar M-D (or GM-GD) pairs were
on average over time. The analysis method when applied to random
pair of cells, chosen without any regard to lineage relationships, on
average and at any time gave an absolute difference in normalized rank
approximately equal to 0.35.

Time-dependent analysis of inheritance of Msn2 frequency
Briefly, mutual information between two random variables measures
the amount of information that one random variable contains about
the other. The concept of this is intricately tied to the notion of entropy
thatmeasures the amount of uncertainty of a probability distribution, as
well as to the concept of relative entropy that measures the distance
between two probability distributions. The entropyH(X) of a discrete
random variable X with probability mass function p(x) is defined by
H(X) = −∑xp(x)log(p(x)). The relative entropy or the K-L distance
between two probability mass functions p(x) and q(x) is defined as
DðpjjqÞ ¼ ∑xpðxÞ log pðxÞ

qðxÞ. The mutual information I (X; Y) between
two random variables X and Y is then defined as the amount of re-
duction in entropy of X (or Y), if Y (or X) is known. Mathematically,
it is the K-L distance between the joint probability distribution p(x, y)
and the product of themarginal distributions p(x) and p(y) and given

as IðX;YÞ ¼ ∑x ∑ypðx; yÞ log pðx;yÞ
pðxÞpðyÞ

� �
. From the above equation, it is

possible to deduce that mutual information I (X; Y) is the difference
between entropy ofX and the entropy ofX conditioned on Y: I (X; Y) =
H(X) – H(X|Y). Thus, by measuring the reduction in uncertainty of a
random variableX due to the knowledge of another random variable Y,
mutual information allows quantification of mutual dependence and
hence the similarity between two random variables (30).

Specifically in this context, let Z be a random variable denoting an
M-D pair, that is,Z ∈ f1; 2; ::; ng ; pðzÞ ¼ 1

n, where n is the number of
M-D pairs. When Z = z, let Xz be a random variable denoting the oc-
currence of a spike at any time point in the daughter, that is, Xz ∈ {0,1}.
Similarly, let Yz be a random variable denoting the occurrence of a
spike at any time point in the mother, that is, Yz ∈ {0,1}. p(x) or p(y)
was calculated by counting the number of times the localization value of
the daughter ormother cell was above the threshold and then dividing by
the total number of timepoints forwhich that cell was observed. Similar-

ity Iz for cell pair zwas then calculated as Iz ¼ ∑x ∑ypðx; yÞ log pðx;yÞ
pðxÞpðyÞ

� �
.

p(x, y)was quantified by calculating the probability that amother and
daughter cell spike simultaneously within a very small time window
spanning three time points. Similarity I was then calculated as the
expected value of the similarity for all M-D pairs I = ∑zp(z) Iz. Simi-
larity I was then normalized by its upper bound (30) calculated from
max(H(Xz),H(Yz)). All analyses onM-D time traces were performed
Chatterjee and Acar, Sci. Adv. 2018;4 : e1701775 18 April 2018
by focusing on the time interval following cell division to until the end of
the experiment. The same analysis method was applied to obtain the
similarity in spike patterns betweenGM-GDandGGM-GGDcell pairs.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/4/e1701775/DC1
Supplementary Materials and Methods
fig. S1. Design of a microfluidic platform and a typical experimental setup.
fig. S2. Growth of cell populations for cells grown in 2, 0.25, and 0.1% glucose.
fig. S3. Cumulative distribution function of budding intervals measured from individual cells
grown in 2, 0.25, and 0.1% glucose.
fig. S4. Budding interval durations of spatially separate cells grown in 2, 0.25, and 0.1% glucose.
fig. S5. Example of erroneous approximation of Msn2 nuclear localization intensity.
fig. S6. Ratio of nuclear to cellular area as a function of the cell area.
fig. S7. Performance of algorithm in estimation of nuclear localization of Msn2 from whole cell,
in the absence of a nuclear marker.
fig. S8. Estimation of nuclear localization of Msn2 using the algorithm is not sensitive to the
variability in ratio of nuclear to cellular area at the single-cell level.
fig. S9. No photobleaching or significant drop in Msn2 signal was observed over the course of
an experiment.
fig. S10. Proportion of cells having localization values below a given threshold k as a function
of different thresholds k.
fig. S11. Quantification of Msn2 localization dynamics is robust to the choice of threshold used
for localization quantification.
fig. S12. Heritability analysis of different localization features of Msn2 and analysis of
inheritance of dynamical patterns of Msn2 localization is not sensitive to the choice of
threshold used for Msn2 localization quantification.
fig. S13. Lack of correlation in localization amplitude between the first and second generation
of the same cell.
fig. S14. Integral of Msn2 nuclear localization in different stress conditions.
fig. S15. Dissimilarity analysis of different localization features of Msn2 is not affected by spatial
proximity between cell pairs.
fig. S16. Time dependent analysis of inheritance of Msn2 amplitude.
fig. S17. Similarity of Msn2 localization spikes as a function of time for M-D cell pairs in
different glucose concentrations (related to Fig. 7B).
fig. S18. Correlation analysis between Msn2 localization features and cellular growth rate.
fig. S19. Mean squared error for Lasso solution as a function of different values of
regularization or shrinkage parameter.
fig. S20. Lasso analysis is not sensitive to the choice of threshold used for Msn2 nuclear
localization quantification.
fig. S21. System and measurement noise for different stress environments.
fig. S22. Block diagram of system identification and prediction steps.
fig. S23. Predicting CFP expression levels using cross-validation.
fig. S24. Sample polynomial fits for single-cell CFP trajectories.
table S1. Population doubling times of cells in different glucose concentrations obtained from
fig. S2 (A to C).
table S2. Population doubling times calculated from OD600 measurements of cells grown in
batch, using a shaker-incubator.
table S3. Values of parameters obtained from fitting data in fig. S6 to a sigmoidal function.
table S4. The P values comparing duration of Msn2 nuclear localization between 2 and
0.25% glucose, as well as 2 and 0.1% glucose across all threshold levels.
table S5. The P values comparing amplitude (A), frequency (B), and duration (C) of Msn2
nuclear localization between 2 and 0.25% glucose, as well as 2 and 0.1% glucose across
different cell generations.
table S6. The P values obtained from Mann-Whitney U test.
table S7. The P values obtained from Mann-Whitney U test.
table S8. The P values obtained from Mann-Whitney U test.
table S9. Parameter values extracted from the linear state-space model’s application to the
data obtained from 0.25 and 0.1% glucose experiments.
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