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N E U R O S C I E N C E

Neurite architecture of the planum temporale predicts 
neurophysiological processing of auditory speech
Sebastian Ocklenburg1*†, Patrick Friedrich1†, Christoph Fraenz1†, Caroline Schlüter1,  
Christian Beste2, Onur Güntürkün1, Erhan Genç1

The left hemispheric advantage in speech perception is reflected in faster neurophysiological processing. On the 
basis of postmortem data, it has been suggested that asymmetries in the organization of the intrinsic microcircuitry 
of the posterior temporal lobe may produce this leftward timing advantage. However, whether this hypothetical 
structure-function relationship exists in vivo has never been empirically validated. To test this assumption, we 
used in vivo neurite orientation dispersion and density imaging to quantify microcircuitry in terms of axon and 
dendrite complexity of the left and right planum temporale in 98 individuals. We found that a higher density of 
dendrites and axons in the temporal speech area is associated with faster neurophysiological processing of auditory 
speech, as reflected by electroencephalography. Our results imply that a higher density and higher number of 
synaptic contacts in the left posterior temporal lobe increase temporal precision and decrease latency of neuro-
physiological processes in this brain region.

INTRODUCTION
Auditory speech processing involves the posterior temporal cortex 
and is strongly left-lateralized in most individuals (1–5). Possibly, a 
key difference that drives left hemispheric language dominance is 
the time advantage and the higher temporal resolution of the left 
hemisphere (6). The planum temporale (PT), a brain area on the 
surface of the posterior superior temporal gyrus, likely plays an es-
sential role for leftward functional asymmetries in the language sys-
tem (7). Postmortem analyses show that the left PT not only is larger 
than the right PT (8, 9) but also is characterized by a larger number 
of functionally coupled and densely innervated columnar neuronal 
units (10–14). These morphological left-right differences could be 
related to the left hemispheric time advantage. Unfortunately, de-
tailed in vivo knowledge about the cellular morphological asymmetries 
of the PT and their relation to faster left hemispheric speech pro-
cessing in a sufficiently large number of subjects is missing up to 
now, especially regarding the underlying neurophysiological process, 
for example, as reflected by asymmetries in electroencephalography 
(EEG) measures. Without these insights, however, it is impossible to 
deduce how lateralized network properties translate into hemispheric 
language dominance.

Up to now, it was impossible to fill this gap due to a lack of practical 
in vivo methods to examine the microstructural layout of the tem-
poral cortex on the level of axons or dendrites. The introduction of 
NODDI (neurite orientation dispersion and density imaging), which 
enables the magnetic resonance imaging (MRI)–based quantifica-
tion of neurite morphology, has resolved this problem. NODDI 
uses a multishell high-angular-resolution diffusion imaging protocol 
and offers a novel way to analyze diffusion-weighted data with regard 
to tissue microstructure in white and gray matter. The technique 
features a three-compartment model distinguishing intraneurite, 
extraneurite, and cerebrospinal fluid environments.

NODDI is an in vivo imaging approach based on a simplified 
version of a more complex diffusion model that was successfully 
validated by histological examinations using staining methods in 
the gray and white matter of mammals (15, 16). Cortical gray matter, 
for the most part, is composed of somata and neuropil, namely, den-
drites, axons, and glial cell processes that restrict the movement of 
water molecules. The density and geometric orientation of the den-
dritic and axonal stick-like diffusion patterns bring four NODDI markers, 
which point to a quantitative estimate of neurite density and neurite 
orientation dispersion (15–17). Furthermore, cortical gray matter 
also includes glial cells and blood vessels that cause a hindered pattern 
of water diffusion, which is used to estimate cell density in NODDI. 
Histological examinations show that the relative proportion of glial 
cells and blood vessels within a fixed volume of the cortex is rela-
tively small compared to other components (18). As a consequence, 
the diffusion signals of NODDI metrics are mainly shaped by the 
architecture of neurites and somata (15, 16). It was recently demon-
strated that NODDI is capable of estimating diffusion markers of 
neurite density and orientation dispersion by in vivo measurements 
in humans (17). NODDI makes it possible that neurophysiological 
and microstructural analyses are conducted with the same subject. 
Direct validation of NODDI has recently been performed in a study 
investigating neurite dispersion as a potential marker of multiple 
sclerosis pathology in postmortem spinal cord specimens (19). They 
reported that neurite density obtained from NODDI significantly 
matched neurite density, orientation dispersion, and myelin density 
obtained from histology. Furthermore, the authors also found that 
NODDI neurite dispersion matched the histological neurite dispersion. 
This indicates that NODDI metrics closely reflect their histological 
conditions.

Here, we present the first in vivo examination of the microstructural 
neurite architecture of the human PT and its relation to the neuro-
physiology of auditory speech perception. We obtained NODDI 
images from a large sample of healthy participants (N = 98; mean 
age, 23.62 years; SD, 3.58; 52 males, 46 females). We compared 
macro- and microstructural brain properties of the PT across the 
hemispheres and examined their relationship with the neurophysio-
logical correlates of lateralized auditory speech perception. We 
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hypothesize that microstructural neurite PT asymmetries as mea-
sured with NODDI will predict leftward functional hemispheric 
asymmetries in the neurophysiological correlates of auditory speech 
perception. As it has been suggested that the enhanced temporal 
resolution and speed of Wernicke’s area in the left hemisphere un-
derlie functional leftward dominance for auditory speech percep-
tion (6), we used EEG to assess lateralization of the N1 event-related 
potential (ERP) component, the earliest reliable leftward lateralized 
neurophysiological correlate of auditory speech perception. To this 
end, we used a verbal dichotic listening paradigm. The N1 is an early 
negative ERP component that shows a pronounced leftward lateral-
ization at posterior electrode sites for verbal stimuli (20). It is the 
earliest ERP component that is associated with verbal recognition 
(21) and is thought to reflect orientation of attention toward a stimulus 
(22). Possibly, the left lateralization of the N1 after presentation of 
verbal stimuli reflects the greater effectiveness of the left hemisphere 
when processing verbal stimuli (20).

RESULTS
Figure 1A shows the EEG results of the dichotic and noise condition 
for the chosen electrodes. For amplitudes, the ANOVA (analysis of 

variance) showed a significant main effect of condition (F1,97 = 281.81; 
P < 0.001; 2p = 0.74), indicating a more negative N1 amplitude in 
the dichotic condition (−2.52 ± 0.11 V) than in the noise condition 
(−0.50 ± 0.06 V). All other effects failed to reach significance (all 
P > 0.66).

For the latencies, the ANOVA yielded a significant main effect of 
hemisphere (F1,97 = 12.45; P < 0.001; 2p = 0.11), showing an earlier 
N1 peak onset in the left hemisphere (111 ± 1.11 ms) than in the right 
hemisphere (119 ± 1.07 ms). In addition, the main effect of condi-
tion reached significance (F1,97 = 17.35; P < 0.001; 2p = 0.11). Com-
parison of the conditions revealed that the average N1 peak onset 
was faster in the noise condition (111 ± 1.15 ms) than in the dichotic 
condition (118 ± 0.99 ms). The key interaction hemisphere × condition 
was significant (F1,97 = 14.25; P < 0.001; 2p = 0.09). Bonferroni-
corrected post hoc tests indicated significant hemispheric asymmetries 
in the dichotic condition (P < 0.001). Here, an earlier N1 peak onset 
was observed in the left hemisphere (112 ± 1.37ms) compared to the 
right hemisphere (125 ± 1.33 ms). In the noise condition, there were 
no significant hemispheric asymmetries in N1 latencies (P > 0.82). 
Thus, in line with previous literature, we found a leftward lateralization 
of the N1 for speech stimuli.

To estimate the cortical distribution of the sources generating 
the N1, we used standardized low-resolution brain electromagnetic 
tomography (sLORETA) (23). A one-sample t test [corrected for mul-
tiple comparisons using statistical nonparametric mapping (SnPM), 
P < 0.01] was calculated for the dichotic condition. This test indicated 
that N1 differences between the conditions were due to activation 
differences in the superior temporal lobe. The predominant source 
was the PT in the superior temporal gyrus (BA41/BA42) of the left 
hemisphere (Fig. 1B). Thus, sLORETA analysis (24) revealed that the 
left PT was the main source of N1 differences.

On the basis of the sLORETA results, we then investigated the 
microstructural properties of the PT using NODDI imaging. This 
was done to test whether specific microstructural properties of the 
PT are associated with our neurophysiological outcome measure. 
To quantify microstructural properties in terms of the axonal and 
dendritic density in the PT, we determined the so-called intraneurite 
volume fraction (INVF) in the left and right PT (see Fig. 2 and Ma-
terials and Methods for a detailed description of the measure).

In addition, dendritic arborization was determined using the 
neurite orientation dispersion index (ODI) (see Fig. 2 and Materials 
and Methods for a detailed description of the measure). Moreover, 
we determined the isotropic diffusion (ISO) as a control measure 
for water diffusion in cerebrospinal fluid.

For the first time, our study provides strong empirical evidence 
for leftward structural asymmetries in PT neurite architecture in vivo. 
We found significant left-right differences for two NODDI in vivo 
measures of PT microstructure. The INVF of the left PT (0.33 ± 
0.01) was significantly higher than that of the right PT (0.32 ± 0.02) 
(t97 = 5.27; P < 0.001). INVF is a marker of neurite density. Thus, the 
significant leftward asymmetry we observed for neurite density in-
dicates a higher concentration of dendrites and axons in the gray 
matter of the left PT than of the right PT. Furthermore, the ODI of 
the left PT (0.58 ± 0.03) was significantly higher than that of the 
right PT (0.56 ± 0.03) (t97 = 4.53; P < 0.001), indicating a leftward 
asymmetry of dendritic arborizations in the PT. In contrast, ISO did 
not show hemispheric differences between the left PT (0.19 ± 0.04) 
and the right PT (0.19 ± 0.05) (t97 = −0.19; P = 0.85). Thus, there 
were no systematic structural diffusion differences between the left 

Fig. 1. Neurophysiological results for ERPs and sLORETA. (A) Averaged ERP 
waveforms for left (C5) and right (C6) electrodes. Blue tones represent the dichotic 
condition. Green tones represent the noise condition. (B) Source localization of the 
dichotic condition. sLORETA was used to show the cortical distribution of activa-
tion during the peak onset of the N1 component of the dichotic condition. Warm 
colors reflect positive current source density.
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and the right PT, but there were specific differences in neurite 
architecture.

To contrast microstructural properties of the PT to its macro-
structure of the PT, we then determined the PT volume (VOL) in 
the left and the right hemisphere. This was done as the macrostruc-
tural leftward asymmetry of the PT has been suggested to under-
lie functional lateralization (25). As expected, we found a significant 
macroscopic volume difference for the PT between the two hemi-
spheres. On average, the volume of the left PT (2081 ± 460 mm3) 
was significantly larger than that of the right PT (1645 ± 330 mm3) 
(t97 = 11.01; P < 0.001).

Going beyond what is feasible in postmortem studies, our in vivo 
approach allowed us to relate macro- and microstructural measures 
of PT architecture to a functional measure of auditory speech pro-
cessing. To test whether interindividual differences in the neuro-
physiological correlates of auditory speech perception are modulated 
by PT architecture, we correlated the macro- and microstructural 
properties of the PT with the N1 latencies during the dichotic listening 
task. We focused our analysis on the N1 latency because the domi-
nance of the left PT for fast temporal processing has been suggested 
to underlie language lateralization (6).

For PT volume, we did not find any significant association with N1 
latencies during the dichotic condition (table S1) or noise condition 
(table S4). This lack of association between PT macrostructure and 
auditory speech processing is in line with previous results (25) and 
further supports the assumption that macrostructural asymmetries 
of the PT are not the structural basis of functional asymmetries.

However, PT neurite architecture asymmetries significantly pre-
dicted N1 latency. INVF of the left PT showed a significant negative 
correlation with left hemispheric N1 latency (r = −0.25, P < 0.05) 
(Fig. 3 and Table 1), indicating that individuals with higher neurite 
density in the left PT showed shorter N1 latencies in the left hemi-
sphere. Other structure-function relationships between NODDI mea-
sures and neurophysiological correlates during the dichotic (tables S2 
and S3) or noise condition (tables S5 to S7) were not significant.

Finally, we conducted a multiple regression analysis. In doing so, 
we were able to extract the unique contribution of each macro- and 
microstructural brain property of the left PT in predicting N1 latency 
in the left hemisphere. In a combined multiple regression analysis 
with INVF, ODI, ISO, and VOL of the left PT as predictors and N1 
latency in the left hemisphere as the dependent variable, INVF of 
the left PT was the only variable providing a unique contribution in 
predicting N1 latency in the left hemisphere ( = −0.23; P < 0.05; 
other predictors, all P > 0.11; see Table 2). An alternative regression 
model including sex and estimates of handedness (laterality quotient) 
as additional predictors did not change the pattern of results (table S8).

One potential confounding factor in our model could be cortical 
thickness. If the left PT had thicker gray matter, it would be less 
susceptible to partial volume with subcortical white matter that 
might modulate asymmetries in neurite density and orientation dis-
persion of PT. To rule out this possibility, we tested asymmetries in 
cortical thickness of the PT in the left hemisphere. We did not find a 
significant cortical thickness difference for the PT between the two 
hemispheres (left PT: 2.58 ± 0.15 mm; right PT: 2.59 ± 0.17 mm; 

Fig. 2. Methodological sequence for the estimation of brain properties. T1-weighted images were automatically segmented into gray and white matter using 
surface-based methods in FreeSurfer (top left). From the reconstructed cortical surface, the PT in each hemisphere was defined according to the Destrieux atlas (top right) 
and volume estimates (VOL) were obtained. The PT was linearly transformed into the native space of the diffusion-weighted NODDI images, and different microstructural 
measures (INVF, ODI, and ISO) were computed (bottom). ROIs, regions of interest.
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t97 = −0.71; P = 0.48). In addition, we calculated a second alternative 
regression model including cortical thickness and NODDI coeffi-
cient predictors. The inclusion of cortical thickness did not change 
the pattern of results for neurite density (table S9).

EEG signals are assumed to be driven by postsynaptic potentials 
from apical dendrites of cortical neurons and not from action po-
tentials of long-range fibers. We nevertheless aimed to rule out the 
possibility that structural properties of long-range association fibers 
might affect our results. The source reconstruction areas displayed in 
Fig. 1B overlapped with the location of the arcuate fasciculus (AF), 
the main association fiber tract in the language system. Because 
this fiber tract has been proposed to play an important role for 
functional hemispheric asymmetries in the language system (26), we 
conducted fiber tracking of the AF (see Materials and Methods) and 
calculated correlations between macrostructure (volume) and NODDI 
coefficients of the AF and EEG measures (see tables S10 to S13). 
There were no significant associations. This finding supports the 
idea that our EEG measures were mostly determined by gray, and 
not white, matter structure.

DISCUSSION
The major aim of our study was to investigate the specific relationship 
between microstructural PT architecture and the neurophysiological 
correlates of auditory speech processing in order to develop a mecha-
nistic account on the superiority of the left hemisphere in the tem-
poral domain that gives rise to language dominance. Our results 
demonstrate that the left PT shows a higher density of dendrites and 
axons, which also display a higher degree of arborization. Neurite 
density of the left PT significantly predicts N1 latency in the 
left hemisphere. This effect was highly specific and not affected 
by macrostructural measures of the PT, such as cortical volume 
or thickness. Moreover, macro- and microstructural properties 
of the AF were not associated with N1 latency in the left hemi-

spheres, indicating that specifically gray matter microstructure, 
and not potentially relevant white matter tracts, affects the EEG 
signal.

Nearly a hundred years of postmortem human brain samples 
that span close to a century could demonstrate that area PT is char-
acterized by long vertical columns of closely apposed somata with a 
width of just a few cell bodies (10, 11, 14). These microcolumns are 
equidistantly separated by neuropil. This arrangement shows a cou-
ple of morphological asymmetries. Left PT microcolumns are wider 
and are located farther away from the next one (10). As a conse-
quence, dendrites of neurons in neighboring microcolumns overlap 
less on the left (12, 13). In addition, left PT microcolumns are inner-
vated by a higher density of axons, and these axons are more spatially 
localized and thus innervate a smaller number of microcolumns 
(12, 27). Finally, left microcolumns are connected to a larger num-
ber of other microcolumns than those on the right.

Our in vivo results extend the insights of these studies and connect 
them to physiological measures of speech processes. As a consequence, 
we can derive a working hypothesis on how the microstructure of 
left hemispheric PT could promote a high temporal precision of spik-
ing subsequent to speech input (Fig. 4).

We observed a significantly higher density of dendrites and axons 
in the left PT. Postmortem Golgi studies of human PT described 
higher axonal densities in left microcolumns, a higher degree of single 
axon-to-microcolumn mappings on the left, and an absence of over-
lapping dendritic space between neighboring microcolumns in the 
left hemisphere (12, 27).

The human auditory cortex shows a clear tonotopic columnar 
sound frequency organization that is stable through cortical depth 
(28). As a result, we would expect that a high number of left hemi-
spheric axons that transmit a frequency-specific volley of spikes on a 
large number of dendrites along the length of a microcolumn could 
cause a near-synchronous activation of columnar neurons. Concerted 
presynaptic firing can result in strong membrane depolarization 
and a reduced membrane time constant such that neurons produce 
tightly phase-locked spikes and turn into better coincidence de-
tectors (29–31). This could increase temporal precision and, impor-
tantly, decrease the latency of left PT neurons. Our ERP data support 
the idea that such a synchronous mass potential in the left PT 
may underlie leftward dominance for auditory speech processing, 
as this area was localized as the source of the N1. However, when 
interpreting these results, it has to be considered that NODDI-
derived neurite density as reflected by INVF might be, in part, influ-
enced by myelin (32, 33) and that postmortem studies indicate that 
the left posterior superior temporal lobe shows a significant leftward 
myelination asymmetry (34). Because myelination is also a micro-
structural feature of relevance to processing speed, future studies 
should investigate the link between myelin, NODDI metrics, and 

Table 1. Correlations between INVF of the PT and N1 latency during 
dichotic condition. P values are two-tailed and Bonferroni-corrected for 
multiple comparisons. 

INVF left PT INVF right PT

Left N1 latency 
dichotic (C5)

r = −0.25, P < 0.05 r = −0.07, P = 0.99

Right N1 latency 
dichotic (C6)

r = 0.00, P = 0.99 r = 0.05, P = 0.99

Fig. 3. Association between auditory speech processing and neurite architecture. 
Scatter plot illustrating the relationship between INVF of the left PT and N1 latency 
of the left electrode (C5).
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neurophysiological processing in greater detail. Together, our 
NODDI-EEG results are possibly part of a mechanistic account on 
how microstructural properties of the left PT could produce the 
hemispheric difference that drives language dominance due to left-
right differences of time advantage and higher temporal resolution.

MATERIALS AND METHODS
Participants
One hundred two participants aged between 18 and 33 years (mean 
age, 23.63 years; 54 males) were tested in the present study. Seventy 
participants were right-handed (mean laterality quotient, 84.30; SD, 
21.21), and the remaining 32 participants were left-handed (mean 
laterality quotient, −73.28; SD, 24.75). Handedness was measured 
with the Edinburgh Handedness Inventory (EHI) (35). Participants 
had no history of neurological or psychiatric disorders and matched 
the standard inclusion criteria for functional MRI (fMRI) examina-
tions. Before the beginning of the experiment, participants’ hearing 
capabilities were tested using audiometric screening at 6000, 3000, 
1500, and 750 Hz. None of the individuals included in our final 
sample had any interaural differences of more than 15 dB for any of 
these frequencies.

Because of technical difficulties with the EEG acquisition, four 
individuals were excluded from the study. Thus, the final sample 
consisted of 98 participants (mean age, 23.62 years; SD, 3.58; 
52 males, 46 females). The study was approved by the relevant ethics 
authority (the local ethics committee of the Faculty of Psychology at 
Ruhr-University Bochum). All participants had to give written in-
formed consent and were treated in accordance with the Declaration 
of Helsinki. Participants either were paid or received course credit. 
Two testing sessions took place.

In the first session, handedness was assessed and participants were 
tested with the EEG dichotic listening task. In the second session, all 
MRI imaging was performed at the Bergmannsheil Hospital in Bochum.

EEG dichotic listening paradigm
The EEG dichotic listening paradigm was used and validated in two 
previous studies by (24, 36). The paradigm was a passive dichotic 
listening task, with the stimuli consisting of six consonant-vowel 
syllable pairs (for example, “BA,” “DA,” “GA,” “KA,” “PA,” and “TA”). 
Stimuli were spoken by an adult German male and had a duration of 
350 ms. The stimulus set was pretested and validated in a previous 
study on GRIN2B gene variation and dichotic listening (37). Stimuli 
were presented at 30 dB via earphones using Presentation software 
(Neurobehavioral Systems Inc.). Voice onset time differences be-
tween voiced consonants such as “BA,” “DA,” and “GA” and voiceless 

consonants such as “KA,” “PA,” and “TA” were controlled for. Spec-
tral temporal envelopes of the different stimuli were matched.

Before the beginning of the experiment, participants were told to 
passively listen to the stimuli. There were two different conditions. 
In the “dichotic condition,” two different stimuli (such as “GA” and 
“TA”) were played simultaneously, one to each ear. To prevent any 
confounding effects of syllable type, all possible combinations of 
syllable pairs were presented in a counterbalanced manner. The sec-
ond condition was the “noise condition,” in which white noise was 
presented to both ears instead of the verbal stimulus material that 
was used in the dichotic condition. This condition was included as a 
control condition to ensure that the results of the dichotic listening 
condition reflected a specific effect of language lateralization, rather 
than a nonspecific auditory phenomenon. The paradigm began with 
a 10-trial training block that was excluded from further analysis. 
Afterward, three experimental blocks consisting of 30 dichotic trials 
and 30 noise trials were administered. Thus, overall, the paradigm 
consisted of 180 trials, with 90 trials for both the dichotic and the 
noise condition. Stimulus order was randomized, and the interstimulus 
interval was randomized between 3150 and 3650 ms to avoid habitua
tion effects.

Recording and analysis of EEG signals
During the passive dichotic listening task, EEG signals were recorded 
with a sampling rate of 1000 Hz using a Brain Products actiCAP 
setup with 64 active electrodes at standard scalp positions. FCz was 
used as the reference electrode, and the impedance of all electrodes 
was below 5 kilohms. EEG data were analyzed using Brain Vision 

Fig. 4. Hypothetical model of the microstructural asymmetries of human area 
PT as revealed by current in vivo study. Highly schematized depiction of two 
microcolumns in left and right hemispheric PT. The density of dendrites and axons 
is higher on the left. In addition, left PT neurons have a higher degree of arborization. 
On the basis of previously published postmortem data, microcolumns are wider 
and further apart in the left hemisphere such that dendritic arbors do not overlap. 
Furthermore, afferents axons innervate smaller numbers of neighboring microcolumns, 
possibly enabling sharper tonotopic mapping of columnar frequencies. The higher 
density of dendrites and afferents on the left side could enable near-synchronous 
activation of frequency-specific microcolumnar neurons, thereby decreasing the 
latency of left PT cells and increasing their temporal precision.

Table 2. Multiple regression analysis predicting left N1 latency during 
dichotic condition by structural predictors. 

Predictors  t P

Left PT INVF −0.23 −2.34 0.02

Left PT ODI 0.10 0.99 0.32

Left PT ISO 0.13 1.34 0.18

Left PT VOL 0.15 1.50 0.14

Dependent variable: left N1 latency 
dichotic (C5)

R2 = 0.11, P = 0.024
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Analyser II software (Brain Products). Raw data were first filtered 
with a band-pass (IIR) filter (0.5 to 20 Hz). Several measures were 
taken to control for or reject artifacts. First, the filtered EEG was 
visually inspected for large technical artifacts (for example, head or 
jaw movements), or faulty channels, which were removed from the 
following analysis. Subsequently, recurrent, physiological artifacts, 
such as eye blinks, saccades, or pulse, were excluded using an inde-
pendent component analysis (ICA) approach. ICA was performed 
using the infomax algorithm, and all ICA components reflecting the 
aforementioned artifacts were excluded from further analysis. Af-
terward, FCz and all excluded channels were interpolated topo-
graphically with spherical splines. Stimulus-locked segmentation 
(from −100 ms before to 500 ms after stimulus presentation) was 
performed for all conditions. Subsequently, automated artifact re-
jection was performed for each segment. If a maximal amplitude 
difference of 200 (V) in a 100-ms interval or activity below 0.5 (V) 
in a 200-ms period was observed in any electrode, then the segment 
was excluded from further analysis. This procedure led to the rejec-
tion of less than 1% of all trials.

Subsequently, baseline correction −100 ms to stimulus onset was 
performed, and the average signal for each channel was determined. 
N1 peak detection was performed at electrodes C5 (left) and C6 
(right), which were previously shown to generate reliable N1 re-
sponses, both in dichotic listening (36). N1 amplitude and latency 
of the N1 peak were used as dependent variables for further analysis 
and thus were extracted for both electrodes.

Standardized low-resolution brain electromagnetic 
tomography
To reconstruct the cortical distribution of source locations contributing 
to the N1 ERP component during dichotic listening, we used sLORETA 
(23). sLORETA is an upgraded version of LORETA (38). It determines 
a single linear solution for the inverse problem of brain function source 
localization without any localization bias (39). The accuracy of sLORETA 
was validated by TMS (transcranial magnetic stimulation)/EEG 
studies (40) and by simultaneous EEG/fMRI studies (41). For visu-
alization purposes, we used a three-dimensional head model that 
was based on the MNI152 template (42). Overall, the model consisted 
of 6239 voxels with a spatial resolution of 5 mm. For each of these 
voxels, standardized current density was determined. Statistical analy-
ses were performed using voxel-wise randomization tests that were 
based on SnPM. The number of permutations was set to 5000. On 
the basis of the EEG signal in the dichotic condition, one-sample 
t tests were used to localize the source of EEG amplitudes. The 
sLORETA viewer was then used to determine all voxels that showed 
a significant difference from zero with P < 0.01 (corrected for mul-
tiple comparisons) and their MNI coordinates.

Acquisition of imaging data
All imaging data were acquired at the Bergmannsheil Hospital in 
Bochum, Germany, using a 3T Philips Achieva scanner with a 
32-channel head coil.
Anatomical imaging
For the purpose of segmenting brain scans into gray and white matter 
sections, as well as for the identification of anatomical landmarks, a 
T1-weighted high-resolution anatomical image was acquired [MP-RAGE; 
TR (repetition time), 8179 ms; TE (echo time), 3.7 ms; flip angle, 8°; 
220 slices; matrix size, 240 × 240; resolution, 1 × 1 × 1 mm]. The 
acquisition time of the anatomical image was 6 min.

Diffusion-weighted imaging for NODDI
For the analysis of NODDI coefficients, diffusion-weighted images were 
acquired using echo planar imaging (TR, 7652 ms; TE, 87 ms; flip 
angle, 90°; 60 slices; matrix size, 112 × 112; resolution, 2 × 2 × 2 mm). 
Diffusion weighting was based on a multishell, high-angular-resolution 
scheme consisting of diffusion-weighted images for b values of 1000, 
1800, and 2500 s/mm2, respectively, applied along 20, 40, and 60 uni
formly distributed directions. All diffusion directions within and 
between shells were generated orthogonal to each other using the 
MASSIVE toolbox (43). In addition, eight data sets with no diffusion 
weighting (b = 0 s/mm2) were acquired as an anatomical reference 
for motion correction and computation of NODDI coefficients. The 
acquisition time of the diffusion-weighted images was 18 min.
Diffusion-weighted imaging for fiber tracking
Because the AF was proposed to play an important role for functional 
hemispheric asymmetries in the language system (26), we additionally 
recorded conventional diffusion tensor images of our participants. 
All diffusion-weighted images were collected with the following pa-
rameters: TR, 7652 ms; TE, 87 ms; flip angle, 90°; 80 slices; matrix 
size, 112 × 112; resolution, 2 × 2 × 2 mm. To increase signal-to-noise 
ratio, three consecutive single-shot spin-echo echo-planar images 
were subsequently averaged. Diffusion weighting was isotropically 
distributed along 60 directions. Except for six non–diffusion-weighted 
images, all images were acquired with a b value of 1000 s/mm2. The six 
nonweighted images (b = 0 s/mm2) were used for anatomical refer-
ence and motion correction. The acquisition time of the diffusion-
weighted images was 36 min.

Analysis of imaging data
Anatomical data
The cortical surfaces of the T1-weighted images were reconstructed 
using FreeSurfer (http://surfer.nmr.mgh.harvard.edu, version 5.3.0). 
The details of this procedure were explained in detail elsewhere 
(44). The automatic reconstruction steps involved skull stripping, 
gray and white matter segmentation, and reconstruction and inflation 
of the cortical surface. These processing steps were performed for 
each participant individually. After preprocessing, each segmenta-
tion was quality-controlled slice by slice. Inaccuracies for the auto-
matic steps were corrected by manual editing, if necessary. Because 
the PT has a pivotal role in auditory speech processing (7), we de-
fined this area per hemisphere from the T1-weighted anatomical using 
an automatic segmentation procedure implemented in FreeSurfer 
(Fig. 1). Here, the PT was extracted following a gyral/sulcal-based 
parcellation algorithm from the Destrieux atlas (45) and was exam-
ined with regard to structure-function relationships in terms of later-
alization of auditory speech perception. Brain segmentation yielded 
a volume estimation of the left and right PT (VOL) (Fig. 1). More-
over, cortical thickness was also determined. The right PT was used 
as a control area in the analysis, as we did not expect a relation with 
EEG results in this area. In a final step, each PT yielded by the par-
cellation algorithm was linearly transformed into the native space of 
the diffusion-weighted images (Fig. 1). The transformed regions 
served as anatomical landmarks from which NODDI coefficients were 
extracted (Fig. 1).
NODDI diffusion data
Diffusion images were preprocessed using FDT (FMRIB’s Diffusion 
Toolbox) as implemented in FSL version 5.0.7. Preprocessing steps 
included a correction for eddy currents and head motion as well as a 
correction of the gradient direction for each volume using the rotation 
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parameters that emerged from head motion. NODDI coefficients 
were computed using the AMICO (accelerated microstructure im-
aging via convex optimization) toolbox (46). The AMICO approach 
was based on a convex optimization procedure that converts the 
nonlinear fitting into a linear optimization problem (46). This frame
work allows robust estimation of multiple fiber populations and 
microstructural NODDI indices by markedly reducing processing tie 
(47). Data analysis with NODDI can be applied to cortical regions 
and white matter structures. The technique was based on a two-level 
approach and featured a three-compartment model distinguishing 
intraneurite, extraneurite, and cerebrospinal environments. First, the 
diffusion signal obtained by the multishell, high-angular-resolution 
imaging protocol was used to determine the proportion of free-moving 
water within each voxel (15–17, 19, 46). This ratio is termed isotropic 
volume fraction (ISO) and reflects the amount of isotropic diffusion 
with Gaussian properties likely to be found in the cerebrospinal fluid 
of gray and white matter regions. Second, the remaining portion of 
the diffusion signal is divided into the INVF and the extraneurite 
volume fraction. Here, by definition, the two volume fractions repre-
senting intra- and extraneurite diffusion complement each other and 
add up to 1 (15–17). INVF represents the amount of stick-like or cy-
lindrically symmetric diffusion that is created when water molecules 
are restricted by the membranes of neurites. In white matter struc-
tures, this kind of diffusion is likely to resemble the proportion of 
axons. In gray matter regions, it serves as an indicator of dendrites 
and axons forming the neuropil. Extraneurite volume fraction is based 
on hindered diffusion within extraneurite environments, which are 
usually occupied by various types of glial cells in white matter struc-
tures and both neurons and glial cells in gray matter regions (15–17).

Neurite orientation dispersion (ODI) is a tortuosity measure 
coupling the intraneurite space and the extraneurite space, resulting 
in alignment or dispersion of axons in white matter or axons and 
dendrites in gray matter (17). Examples of INVF, ODI, and ISO co-
efficient maps from a representative individual are illustrated in 
Fig. 1. As described above, each PT defined for the T1-weighted 
anatomical scan was transformed into the native space of the diffusion-
weighted images to compute NODDI coefficients for these areas.
Fiber tracking
To explore the potential role of long-range white matter fiber tracts 
connecting to the source reconstruction areas of our EEG analysis 
(see Fig. 1B), we performed fiber tracking of the AF (see fig. S1) 
using constrained spherical deconvolution (48) in ExploreDTI (www.
exploredti.com/). After conventional preprocessing steps (correc-
tion for eddy currents and head motion, as well as a correction of 
the gradient direction for each volume using the rotation parameters 
that emerged from head motion), whole-brain tractography of each 
subject was performed. In the second step, we used two-dimensional 
gates “AND” and “NOT” to extract fiber tracts belonging to the AF 
in the left and right hemisphere. The gates for delineating AF were 
chosen in accordance to the Atlas of Human Brain Connections (49). 
All steps were performed in native diffusion space by an individual, 
which was blind to the neurophysiological results of this study. In a 
final step, AF in each hemisphere was linearly transformed into the 
native space of the NODDI images to compute the volume and the 
three NODDI coefficients for these tracts.

Statistical analysis
Statistical analyses were carried out using MATLAB version 
7.14.0.739 (R2012a, MathWorks Inc.) and SPSS version 20 (SPSS 

Inc.). Linear parametric methods were used for all analyses. The 
 level was set to 0.05 (two-tailed). To control for multiple compar-
isons, Bonferroni correction was used if necessary.
Analysis of variance
N1 latencies and amplitudes were analyzed using two-way (2 × 2) 
repeated-measures ANOVAs with the following within-participant 
factors: hemisphere (left or right) and condition (dichotic or noise). 
Subsequent post hoc tests were Bonferroni-corrected with a factor of 4.
Correlation analysis
We examined structure-function relationships by computing Pearson’s 
linear correlation coefficients between the neurophysiological cor-
relates during the dichotic listening task and the structural brain 
properties of the PT and AF included in this study (VOL, INVF, 
ODI, and ISO).
Multiple regression analysis
To examine the aforementioned structure-function relationships 
with regard to the unique contribution of each NODDI estimate of 
the PT, we computed an inclusion/enter multiple regression analysis 
using SPSS. The neurophysiological correlate during the dichotic 
listening task was treated as the dependent variable, and INVF, ODI, 
and ISO were treated as predictors.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/7/eaar6830/DC1
Table S1. Correlations between VOL of PT and N1 latency during dichotic condition.
Table S2. Correlations between ODI of PT and N1 latency during dichotic condition.
Table S3. Correlations between ISO of PT and N1 latency during dichotic condition.
Table S4. Correlations between VOL of PT and N1 latency during noise condition.
Table S5. Correlations between INVF of PT and N1 latency during noise condition.
Table S6. Correlations between ODI of PT and N1 latency during noise condition.
Table S7. Correlations between ISO of PT and N1 latency during noise condition.
Table S8. Multiple regression analysis (alternative model 1) predicting left N1 latency during 
dichotic condition by structural predictors.
Table S9. Multiple regression analysis predicting left N1 latency during dichotic condition by 
structural predictors.
Table S10. Correlations between VOL of AF and N1 latency during dichotic condition.
Table S11. Correlations between INVF of AF and N1 latency during dichotic condition.
Table S12. Correlations between ODI of AF and N1 latency during dichotic condition.
Table S13. Correlations between ISO of AF and N1 latency during dichotic condition.
Fig. S1. Sagittal view of the left AF.
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