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We present a physically inspired model and an efficient algorithm to infer hierarchical rankings of nodes in directed
networks. It assigns real-valued ranks to nodes rather than simply ordinal ranks, and it formalizes the assumption that
interactions aremore likely to occur between individuals with similar ranks. It provides a natural statistical significance
test for the inferred hierarchy, and it can be used to perform inference tasks such as predicting the existence or direc-
tionof edges. The ranking is obtainedby solving a linear systemof equations,which is sparse if thenetwork is; thus, the
resulting algorithm is extremely efficient and scalable.We illustrate these findingsby analyzing real and synthetic data,
including data sets from animal behavior, faculty hiring, social support networks, and sports tournaments. We show
that ourmethod often outperforms a variety of others, in both speed and accuracy, in recovering the underlying ranks
and predicting edge directions.

INTRODUCTION
In systems of many individual entities, interactions and their outcomes
are often correlated with these entities’ ranks or positions in a hierarchy.
While inmost cases these rankings are hidden from us, their presence is
nevertheless revealed in the asymmetric patterns of interactions that we
observe. For example, some social groups of birds, primates, and ele-
phants are organized according to dominance hierarchies, reflected in
patterns of repeated interactions in which dominant animals tend to
assert themselves over less powerful subordinates (1). Social positions
are not directly visible to researchers, but we can infer each animal’s
position in the hierarchy by observing the network of pairwise interac-
tions. Similar latent hierarchies have been hypothesized in systems of
endorsement in which status is due to prestige, reputation, or social
position (2, 3). For example, in academia, universitiesmay bemore likely
to hire faculty candidates fromequally ormore prestigious universities (3).

In all these cases, the direction of the interactions is affected by the
status, prestige, or social position of the entities involved. But it is often
the case that even the existence of an interaction, rather than its direc-
tion, contains some information about those entities’ relative prestige.
For example, in some species, animals are more likely to interact with
others who are close in dominance rank (4–8); human beings tend to
claim friendships with others of similar or slightly higher status (9); and
sports tournaments and league structures are often designed to match
players or teams on the basis of similar skill levels (10, 11). This suggests
thatwe can infer the ranks of individuals in a social hierarchy using both
the existence and the direction of their pairwise interactions. It also sug-
gests assigning real-valued ranks to entities rather than simply ordinal
rankings, for instance, to infer clusters of entities with roughly equal
status with gaps between them.

Here, we introduce a physically inspired model that addresses the
problems of hierarchy inference, edge prediction, and significance test-
ing. Themodel, whichwe call SpringRank,maps each directed edge to a
directed spring between the nodes that it connects and finds real-valued
positions of the nodes that minimize the total energy of these springs.
Because this optimization problem requires only linear algebra, it can be
solved for networks of millions of nodes and edges in seconds.

We also introduce a generative model for hierarchical networks in
which the existence and direction of edges depend on the relative ranks
of the nodes. This model formalizes the assumption that individuals
tend to interact with others of similar rank, and it can be used to create
synthetic benchmark networks with tunable levels of hierarchy and
noise. It can also predict unobserved edges, allowing us to use cross-
validation as a test of accuracy and statistical significance. Moreover,
the maximum likelihood estimates of the ranks coincide with Spring-
Rank asymptotically.

We test SpringRank and its generative model version on both syn-
thetic and real data sets, including data from animal behavior, faculty
hiring, social support networks, and sports tournaments.We find that it
infers accurate rankings, provides a simple significance test for hierar-
chical structure, and can predict the existence and direction of as-yet
unobserved edges. In particular, we find that SpringRank often predicts
the direction of unobserved edges more accurately than a variety of
existing methods, including popular spectral techniques, minimum
violation ranking (MVR), and the Bradley-Terry-Luce (BTL) method.

Related work
Ranking entities in a system from pairwise comparisons or interactions
is a fundamental problem in many contexts, and many methods have
been proposed. One family consists of spectral methods such as eigen-
vector centrality (12), PageRank (13), rank centrality (14), and the
method of Callaghan et al. (15). These methods propose various types
of random walks on the directed network and therefore produce real-
valued scores. However, by design, these methods tend to give high
ranks to a small number of important nodes, giving us little information
about the lower-ranked nodes. In addition, they often require explicit
regularization by adding a small term to every element of the adjacency
matrix if the graph of comparisons is not strongly connected.

A second family focuses on ordinal rankings, that is, permutations,
that minimize various penalty functions. This family includes MVR
(16–18), SerialRank (19), and SyncRank (20). MVR imposes a uniform
penalty for every violation or “upset,” defined as an edge that has a di-
rection opposite to the one expected by the rank difference between the
two nodes. Nonuniform penalties and other generalizations are often
referred to as agony methods (21). For common choices of the penalty
function,minimization can be computationally difficult (17, 22), forcing
us to use simple heuristics that find local minima.

SerialRank constructs amatrix of similarity scores between each pair
of nodes by examining whether they produce similar outcomes when
comparedwith the other nodes, thereby relating the ranking problem to
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While the basic SpringRank algorithm is nonparametric, a parame-
terized regularization term can be included as well, corresponding to a
Gaussian prior. While regularization is often required for BTL, eigen-
vector centrality, and other commonly usedmethods (section S10), it
is not necessary for SpringRank, and our tests indicate that its effects
are mixed.

We also presented a generative model that allows one to create syn-
thetic networks with tunable levels of hierarchy and noise, whose pos-
terior coincides with SpringRank in the limit where the effect of the
hierarchy is strong. By tuning a single temperature parameter, we can
use thismodel tomake probabilistic predictions of edge directions, gen-
eralizing from observed to unobserved interactions. Therefore, after
confirming its ability to infer ranks in synthetic networks where

ground-truth ranks are known, we measured SpringRank’s ability to
predict edge directions in real networks. We found that in networks
of faculty hiring, animal interactions, social support, and NCAA
basketball, SpringRank often makes better probabilistic predictions of
edge predictions than the popular BTL model and performs as well
or better than SyncRank and a variety of other methods that produce
ordinal rankings.

SpringRank is based on springs with quadratic potentials, but
other potentials may be of interest. For instance, to make the system
more tolerant to outliers while remaining convex, one might consid-
er a piecewise potential that is quadratic for small displacements and
linear otherwise. We leave this investigation of alternative potentials to
future work. Given its simplicity, speed, and high performance, we
believe that SpringRank will be useful in a wide variety of fields
where hierarchical structure appears because of dominance, social
status, or prestige.

MATERIALS AND METHODS
Synthetic network generation
Networks were generated in three steps. First, node ranks splanted were
drawn from a chosen distribution. For test 1,N = 100 ranks were drawn
from a standard normal distribution, while for test 2, 34 ranks were
drawn from each of three Gaussians, Nð�4; 2Þ, Nð0; 12Þ, and Nð4; 1Þ,
for a total of N = 102. Second, an average degree < k > and a value of the
inverse temperature b were chosen. Third, edges were drawn generated to
Eq. 7 with c = < k > N/∑i,j exp [−(b/2)(si − sj − 1)2] so that the expected
mean degree is < k > (see section S6).

This procedure resulted in directed networks with the desired hier-
archical structure, mean degree, and noise level. Tests were conducted
for < k > ∈ [5, 15], b ∈ [0.1, 5], and all performance plots showmeans
and SDs for 100 replicates.

Table 1. Edge prediction with BTL as a benchmark. During 50 independent trials of fivefold cross-validation (250 total folds per network), columns show the
percentages of instances in which SpringRank Eq. 3 and regularized SpringRank Eq. 5 with a = 2 produced probabilistic predictions with equal or higher
accuracy than BTL. Distributions of accuracy improvements are shown in Fig. 3. Center columns show accuracy sa, and right columns show sL (Materials and
Methods). Italics indicate where BTL outperformed SpringRank for more than 50% of tests. NCAA Basketball data sets were analyzed 1 year at a time.

Data set Type
% Trials higher sa versus BTL % Trials higher sL versus BTL

SpringRank +Regularization SpringRank +Regularization

Computer science (3) Faculty hiring 100.0 97.2 100.0 99.6

Alakāpuram (2) Social support 99.2* 99.6 100.0 100.0

Synthetic b = 5 Synthetic 98.4 63.2 76.4 46.4

History (3) Faculty hiring 97.6* 96.8 98.8 98.8

NCAA Women (1998–2017) (39) Basketball 94.4* 87.0 69.1 51.0

Tenpat.t.i (2) Social support 88.8 93.6 100.0 100.0

Synthetic b = 1 Synthetic 83.2 65.2 98.4 98.4

NCAA Men (1985–2017) (39) Basketball 76.0* 62.3 68.5 52.4

Parakeet G1 (5) Animal dominance 71.2* 56.8 41.2 37.2

Business (3) Faculty hiring 66.8* 59.2 39.2 36.8

Parakeet G2 (5) Animal dominance 62.0 51.6 47.6 47.2

*Tests that are shown in detail in Fig. 4.
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Fig. 5. Bitwise prediction accuracy sb of Spring Rank versus SyncRank. For 50
independent trials of fivefold cross-validation (250 total folds per NCAA season),
the fractions of correctly predicted game outcomes sb for SpringRank and SyncRank
are shown on the vertical and the horizontal axes, respectively. Points above the
equal performance line, shown in black, are trials where SpringRank is more accurate
than SyncRank. The fractions for which each method is superior are shown in plot
legends.
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