We report on muon spin rotation experiments probing the magnetic penetration depth $\lambda(T)$ in the layered superconductors in 2H-NbSe$_2$ and 4H-NbSe$_2$. The current results, along with our earlier findings on 1T′-MoTe$_2$ (Guguchia et al.), demonstrate that the superfluid density scales linearly with T_c in the three transition metal dichalcogenide superconductors. Upon increasing pressure, we observe a substantial increase of the superfluid density in 2H-NbSe$_2$, which we find to correlate with T_c. The correlation deviates from the abovementioned linear trend. A similar deviation from the Uemura line was also observed in previous pressure studies of optimally doped cuprates. This correlation between the superfluid density and T_c is considered a hallmark feature of unconventional superconductivity. Here, we show that this correlation is an intrinsic property of the superconductivity in transition metal dichalcogenides, whereas the ratio T_c/T_F is approximately a factor of 20 lower than the ratio observed in hole-doped cuprates. We, furthermore, find that the values of the superconducting gaps are insensitive to the suppression of the charge density wave state.
RESULTS AND DISCUSSION

In Fig. 1B, we show the schematic phase diagram of the pressure dependence of the CDW transition temperature T_{CDW} and the superconducting transition temperature T_c for NbSe$_2$, according to Qi et al. (5). The red arrows mark the pressures at which the T dependence of the penetration depth was measured. The TF spectra, above and below T_c at pressures of (C) $p = 0$ GPa and (D) $p = 2.2$ GPa, are shown. The solid lines in (C) and (D) represent fits to the data by means of Eq. 4. The dashed lines are guides to the eyes.

which indicates that this linear relation has general validity for TMD superconductors. Such relations are considered to be a hallmark feature of unconventional superconductivity (31, 35, 36) in cuprate and iron-pnictide superconductors. Upon application of pressure on 2H-NbSe$_2$, the n_s/m^* versus T_c dependence shows the deviation from the abovementioned linear behavior. We find this linear deviation to be very similar to the deviation observed for optimally doped cuprates. Our findings, therefore, pose a challenge for understanding the underlying quantum physics in these layered TMDs and might lead to a better understanding of generic aspects of non–Bardeen-Cooper-Schrieffer (BCS) behaviors in unconventional superconductors.

The second moment of the resulting inhomogeneous field distribution is related to the magnetic penetration depth λ as $\langle \Delta B^2 \rangle \propto \sigma_{sc}^2 \propto \lambda^{-4}$, whereas σ_{sc} is the Gaussian relaxation rate due to the formation of FLL (37). To investigate the symmetry of the superconducting
Fig. 2. Superconducting muon spin depolarization rate σ_{SC} for NbSe$_2$. Temperature dependence of $\sigma_{\text{SC}}(T)$ measured in 4H-NbSe$_2$ at ambient pressure and in 2H-NbSe$_2$ at various hydrostatic pressures in an applied magnetic field of $\mu_0 H = 70$ mT.

gap, we have therefore derived the temperature-dependent London magnetic penetration depth $\lambda(T)$, which is related to the relaxation rate by

$$\frac{\sigma_{\text{SC}}(T)}{\gamma_{\mu}} = 0.06091 \frac{\Phi_0}{\lambda^2(T)}$$

(1)

Here, γ_{μ} is the gyromagnetic ratio of the muon, and Φ_0 is the magnetic-flux quantum. Thus, the flat T dependence of σ_{SC} observed at various pressures for low temperatures (see Fig. 2) is consistent with a nodeless superconductor, in which $\lambda^2(T)$ reaches its zero-temperature value exponentially.

To proceed with a quantitative analysis, we consider the local (London) approximation ($\lambda \gg \xi$, where ξ is the coherence length) and use the empirical α model. The model, widely used in previous investigations of the penetration depth of multiband superconductors (38–42), assumes that the gaps occurring in different bands, besides a common T_c, are independent of each other. The superfluid density is calculated for each component separately (38) and added together with a weighting factor. For our purposes, a two-band model suffices, yielding

$$\frac{\lambda^{-2}(T)}{\lambda^{-2}(0)} = \omega_1 \frac{\lambda^{-2}(T,\Delta_{0,1})}{\lambda^{-2}(0,\Delta_{0,1})} + \omega_2 \frac{\lambda^{-2}(T,\Delta_{0,2})}{\lambda^{-2}(0,\Delta_{0,2})}$$

(2)

Here, $\lambda(0)$ is the London magnetic penetration depth at zero temperature, $\Delta_{0,i}$ is the value of the ith SC gap ($i = 1, 2$) at $T = 0$ K, and ω_i is the weighting factor, which measures their relative contributions to λ^{-2} (i.e., $\omega_1 + \omega_2 = 1$).

The results of this analysis are presented in Fig. 3A, where the temperature dependence of λ^{-2} is plotted for 4H-NbSe$_2$ at ambient pressure and for 2H-NbSe$_2$ at pressures of $p = 0, 0.4, 0.7, 1.4,$ and 2.2 GPa. The dashed and the solid lines for ambient pressure results represent fits for the temperature-dependent London magnetic penetration at ambient pressure using an s-wave and an $s + s$-wave model, respectively (30). As it can be seen, the $s + s$-wave provides a much better description of the data, thereby ruling out the simple s-wave model as an adequate description of $\lambda^{-2}(T)$ for 2H-NbSe$_2$. The two-gap $s + s$-wave scenario with a small gap $\Delta_1 \approx 0.55(3)$ meV and a large gap $\Delta_2 \approx 1.25(5)$ meV for $p = 0$ GPa [with the pressure-independent weighting factor of $\omega_2 = 0.8(1)$] describes the experimental data remarkably well.

The presence of two isotropic gaps in 2H-NbSe$_2$ and their values are in very good agreement with previous results (43–47). According to angle-resolved photoemission spectroscopy (ARPES) data, several independent electronic bands (four Nb-derived bands with roughly cylindrical Fermi surfaces centered at the Γ and K points and one Se-derived band with a small ellipsoid pocket around the Γ point) cross the Fermi surface in 2H-NbSe$_2$, and two-gap superconductivity can be understood by assuming that the SC gaps open at two distinct types of bands. We find that two-gap $s + s$-wave superconductivity is preserved up to the highest applied pressure of $p = 2.2$ GPa. All the $s + s$-wave fits for all pressures are shown in Fig. 3C. Furthermore, the pressure dependence of all the parameters extracted from the data analysis within the α model is plotted in Fig. 3 (B and C). The critical temperature T_c increases with pressure only by ~ 0.7 K at the maximum applied pressure of $p = 2.2$ GPa, as shown in Fig. 3B. We, however, observe a substantial increase of the superfluid density λ^{-2} with increasing pressures, as shown in Fig. 3B. At the maximum applied pressure of $p = 2.2$ GPa, the increase of λ^{-2} is $\Delta \lambda^{-2} \approx 0.5(8)$% compared to the value at ambient pressure. The absolute size of the small gap $\Delta_1 \approx 0.5(3)$ meV and that of the large gap $\Delta_2 \approx 1.25(5)$ meV remain nearly unchanged by pressure, as shown in Fig. 3C. The two-gap $s + s$-wave scenario also describes the data for 4H-NbSe$_2$, which was not reported previously. The gap values for 4H-NbSe$_2$ are $\Delta_1 \approx 0.19(3)$ and $\Delta_2 \approx 0.89(1)$ meV.

The London magnetic penetration depth λ is given as a function of n_s, m^*, ξ, and the mean free path l, according to

$$\frac{1}{\lambda^2} = 4\pi n_s e^2 m^* c^2 \times \frac{1}{1 + \frac{\xi}{l}}$$

(3)

For systems close to the clean limit, $\xi/l \to 0$, the second term essentially becomes unity, and the simple relation $1/\lambda^2 \approx n_s/m^*$ holds. Considering the upper critical fields H_{c2} of 2H-NbSe$_2$, as reported in detail by Soto et al. (48), we can estimate the in-plane coherence length to be $\xi_{ab} \approx 7.9$ nm at ambient pressure $p = 0$ GPa. At ambient pressure, the in-plane mean free path l was estimated to be $l_{ab} \approx 183$ nm. No estimates are currently available for l under pressure. However, the in-plane l is most probably independent of pressure, considering the fact that the effect of compression is mostly interlayered; i.e., the intralayer Nb-Se bond length remains nearly unchanged (especially in the here investigated pressure region) (22). This very small effect of compression can be attributed to the unique anisotropy resulting from the stacking of layers with van der Waals type interactions between them. Thus, in view of the short coherence length and relatively large l, we can reliably assume that 2H-NbSe$_2$ lies close to the clean limit (30, 49). With this assumption, we obtain the ground-state value $n_s/(m^*/m_e) \approx 5.7 \times 10^{27}$ m$^{-3}$ and 7.5×10^{27} m$^{-3}$ for $p = 0$ and 2.2 GPa, respectively.

The strong enhancement of the superfluid density $\lambda^{-2}(0) \approx n_s/(m^*/m_e)$ in 2H-NbSe$_2$ under pressure, as discussed above, is an essential finding of this paper. Note that the impairment of the CDW ordering and the associated lowering of the CDW ordering transition T_{CDW} under pressure may cause the restoring of some electronic density of states at the Fermi surface. However, the electron and hole states that condense into the CDW ordered state comprise only $\approx 1\%$ of the total density of states at the Fermi surface in 2H-NbSe$_2$.
The expected maximal increase of the total density of states caused by a complete suppression of the CDW would be \(AD(E_F) \approx 1\% \), which cannot solely attribute for the observed \(\sim 30\% \) enhancement of the superfluid density in 2H-NbSe\(_2\). Thus, the large pressure effect on \(n_s/(m^*/m) \) has a more complex origin. We also observed that both superconducting gaps \(\Delta_1 \) and \(\Delta_2 \) are nearly pressure independent up to a pressure of \(p = 2.2 \) GPa (Fig. 3C), while the CDW transition temperature is largely reduced in the pressure range \(p = 0 \) to \(2.2 \) GPa (22, 23). This implies that the gap values are insensitive to the suppression of the CDW state. This observation strongly supports the idea that superconducting and CDW orders are somewhat isolated from each other and that the CDW pairing has only a minimal effect on the superconductivity in 2H-NbSe\(_2\) (23). Furthermore, we find the superfluid density in three TMD superconductors—2H-NbSe\(_2\), 4H-NbSe\(_2\), and 1T’-MoTe\(_2\)—to scale linearly with \(T_c \), as shown in Fig. 4 (A and B), which is not expected within BCS theory. This means that the ratio between the superfluid density and the critical temperature \(T_c \) in 2H-NbSe\(_2\) and 4H-NbSe\(_2\) is nearly the same as that for the TMD superconductor 1T’-MoTe\(_2\) (30), indicating a common mechanism and related electronic origin for the superconductivity. We observed that upon application of pressure on 2H-NbSe\(_2\), the dependence between \(n_s/m^* \) and \(T_c \) deviates from the linear correlation, as shown in Fig. 4B. Note that such a deviation was previously found in optimally doped cuprate and Fe-based superconductors under pressure. As an example, the inset of Fig. 4B demonstrates the deviation from the Uemura line in the optimally doped \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \) \((x = 0.155)\) under pressure (73). Note that in the case of 1T’-MoTe\(_2\), the linear relation with the right slope holds even under pressure, up to the highest investigated pressure of \(1.3 \) GPa but within this pressure range, the maximum \(T_c \) of 1T’-MoTe\(_2\) is 2.7 K, which is far below from the optimal superconducting region, where \(T_c \) is about 8 K. In the case of 2H-NbSe\(_2\), the system has a \(T_c = 7 \) K already at ambient pressure, which is still below but quite close to the optimal superconducting region of the phase diagram. Application of pressure pushes the system toward the optimal superconductivity, and as can be seen from our data, the pressure of \(1.7 \) GPa is enough to reach the maximum \(T_c \sim 8 \) K in 2H-NbSe\(_2\). Since, historically, the linear increase of \(T_c \) with \(n_s/(m^*/m) \) is observed only in the underdoped region of the phase diagram of unconventional superconductors, the deviation from the linear relationship for 2H-NbSe\(_2\) under pressure can be explained by locating the system 2H-NbSe\(_2\) within or close to the optimal superconducting region under pressure. The fact that TMDs studied in this work exhibit markedly similar features in the relation between the superfluid density and the critical temperature to those reported in other unconventional superconductors implies that TMDs exhibit unconventional superconducting properties. We also show in 2H-NbSe\(_2\) that the extracted gap sizes do not depend on \(T_c \), which is an additional evidence of unconventional behavior.

The nearly linear relationship between \(T_c \) and the superfluid density was originally observed in hole-doped cuprates (31, 35), where the ratio between \(T_c \) and their effective Fermi temperature \(T_F \) is about \(T_c/T_F \sim 0.05 \), which means about four to five times reduction of \(T_c \) from the ideal Bose condensation temperature for a non-interacting Bose gas. These results were discussed in terms of the crossover from Bose-Einstein condensation (BEC) to BCS-like condensation (53–55). Within the picture of BEC to BCS crossover, systems exhibiting small \(T_c/T_F \) (large \(T_F \)) are considered to be in the BCS-like side, while the linear relationship between \(T_c \) and \(T_F \) is
expected only in the BEC-like side. This relationship has been used in the past for the characterization of BCS-like, so-called conventional superconductors and BEC-like, so-called unconventional superconductors. The present results on 2H-NbSe₂ and 4H-NbSe₂, together with our previously reported results on 1T′-MoTe₂, demonstrate that a linear relation between \(T_c \) and the superfluid density holds for these TMD systems. However, we find the ratio \(T_c/\mu_B \) to be reduced further by a factor of \(\sim 20 \). These systems fall into the clean limit, and therefore, the linear relation is unrelated to pair breaking and can be regarded to hold between \(T_c \) and \(n_s/m^* \). This implies that the BEC-like linear relationship may exist in systems with \(T_c/\mu_B \) reduced even by a factor of 20 from the ratio in hole-doped cuprates.

In (54–56), one of the present authors pointed out that there seem to exist at least two factors that determine \(T_c \) in unconventional superconductors: One is the superfluid density, and the other is the closeness to the competing state. The second factor can be seen in the energy of the magnetic resonance mode, which represents the difference in free energy between the superconducting state and the competing magnetically ordered state. In the case of hole-doped cuprates, the competing state is characterized by antiferromagnetic order but frustrated by the introduction of doped holes. In the case of electron-doped cuprates, the competing state develops in an antiferromagnetic network diluted by the doped carriers. In the case of present TMD systems, the competing state comes from CDW or structural orders. These systematic differences of competing states might be related to the three different ratios of \(T_c/\mu_B \) seen in the three different families of superconductors shown in Fig. 4.

Note that the similar relation between the superfluid density and the critical temperature, observed in layered dichalcogenides and the cuprates, extends a long list of analogies between this different class of materials: pressure and doping phase diagrams (58), Nernst effect (59), optics (60), Hall effect (61), “kinks” in dispersion (62), pseudogap, and Fermi surface “arcs” (63–65). Moreover, the presence of two s-wave superconducting gaps in TMDs, observed by μSR, STM, and ARPES, is analogous to the two-gap (s + s-wave) superconducting gap symmetry of the unconventional Fe-based superconductors (32–34). Thus, this report contributes to an extensive list of analogies between known unconventional superconductors (58–67) (i.e., the cuprates and the pnictides) and layered TMDs. Our findings are all the more the clearest, systematic observation of unconventional superconducting properties in these compounds to date.

In summary, we provide the first microscopic investigation of the superconductivity under hydrostatic pressure in the layered superconductors 2H-NbSe₂ and 4H-NbSe₂. Specifically, the zero-temperature magnetic penetration depth \(\lambda_{\text{eff}}(0) \) and the temperature dependence of \(\lambda_{\text{eff}}(T) \) were studied by means of μSR experiments in 2H-NbSe₂ as a function of pressure up to \(p = 2.2 \) GPa and in 4H-NbSe₂ at ambient pressure. The superfluid densities in both samples and at all pressures are best described by a two-gap s + s-wave scenario. Considering the current data on 2H-NbSe₂ and 4H-NbSe₂ at ambient pressure and our previous observations on 1T′-MoTe₂ (30) at ambient as well as at low pressures, we conclude that the superfluid density \(n_s/m^* \) or \(1/\lambda^2 \) scales linearly with \(T_c \) in the three TMD superconductors: 1T′-MoTe₂, 2H-NbSe₂, and 4H-NbSe₂. We also find that the application of pressure on 2H-NbSe₂ causes a substantial increase of the superfluid density \(n_s/m^* \), which correlates with \(T_c \). However, the \(n_s/m^* \) versus \(T_c \) dependence shows a linear deviation from the Uemura relation. Such a deviation was also previously found in optimally doped cuprate and Fe-based superconductors under pressure. We explain this deviation by considering the fact that the system 1T′-MoTe₂ at low pressures and 4H-NbSe₂ and 2H-NbSe₂ at ambient pressure are located below the optimal SC region of the phase diagram and thus show excellent linear scaling between \(n_s/m^* \) and \(T_c \), while 2H-NbSe₂ is pushed into the optimal SC region by pressure, causing the deviation from the Uemura relation between \(n_s/m^* \) and \(T_c \); the same is observed for cuprates. Our results demonstrate that a linear relation holds for the above-studied TMD superconductors located below the optimal superconducting region of the phase diagram. A ratio \(T_c/\mu_B \) for TMDs is reduced by a factor of 20 from the ratio in hole-doped cuprates. This implies that the superfluid density of TMDs is about an order of magnitude higher than that in the cuprates with respect to their critical temperatures \(T_c \). The fact that TMDs exhibit markedly similar features in the relation between the superfluid density and the critical temperature to those reported in other unconventional superconductor implies that TMDs exhibit rather unconventional superconducting properties. We also find that the values of the superconducting gaps are insensitive to the suppression of the CDW ordered state, indicating that CDW pairing has only a minimal effect on the superconductivity in 2H-NbSe₂. These results hint toward a common mechanism and electronic origin for superconductivity in TMDs, which might have far-reaching consequences for the future development of devices based on these materials.

METHODS

Sample preparation

Single-phase polycrystalline samples of 2H-NbSe₂ and 4H-NbSe₂ were prepared by means of high-temperature solid-state synthesis. Stoichiometric amounts of niobium powder (99.99%) and selenium shots (99.99%) were mixed (for 4H-NbSe₂, an excess of selenium was used) and heated in a sealed quartz tube under an inert atmosphere at 750°C (2H-NbSe₂) and at 900°C (4H-NbSe₂) for 3 days.

Pressure cell

Pressures up to 2.2 GPa were generated in a double-wall piston cylinder type of cell made of CuBe material, especially designed to perform μSR experiments under pressure (68–71). As a pressure-transmitting medium, Daphne oil was used. The pressure was measured by tracking the SC transition of a very small indium plate by AC susceptibility. The filling factor of the pressure cell was maximized. The fraction of the muons stopping in the sample was approximately 40%.

μSR experiment

In a μSR experiment (72), nearly 100% spin-polarized muons \(\mu^+ \) were implanted into the sample one at a time. The positively charged \(\mu^+ \) thermalize at interstitial lattice sites, where they act as magnetic microprobes. In a magnetic material, the muon spin precesses in the local field \(B_{\mu} \) at the muon site with the Larmor frequency \(\nu_{\mu} = \gamma_{\mu}/(2\pi)B_{\mu} \) [muon gyromagnetic ratio \(\gamma_{\mu}/(2\pi) = 135.5 \text{ MHz T}^{-1} \)]. Using the μSR technique, important length scales of superconductors can be measured, namely, the magnetic penetration depth \(\lambda \) and the coherence length \(\xi \). If a type II superconductor is cooled below \(T_c \) in an applied magnetic field ranged between the lower (\(H_{c1} \)) and the upper (\(H_{c2} \)) critical fields, a vortex lattice is formed, which, in general, is incommensurate with the crystal lattice with vortex cores separated by much larger distances than those of the unit cell. Because the implanted muons stop at given crystallographic sites, they will
randomly probe the field distribution of the vortex lattice. These measurements need to be performed in a field applied perpendicular to the initial muon spin polarization (so-called TF configuration).

μSR experiments under pressure were performed at the μE1 beamline of the Paul Scherrer Institute (Villigen, Switzerland), where an intense high-energy ($p_0 = 100$ MeV/c) beam of muons was implanted in the sample through the pressure cell. The low-background Dolly instrument was used to study the polycrystalline samples of 2H-NbSe$_2$ and 4H-NbSe$_2$ at ambient pressure.

Analysis of TF-μSR data

The TF-μSR data were analyzed by using the following functional form (39)

$$P(t) = A_c \exp \left[- \frac{(\sigma_c^2 + \sigma_{nm}^2)}{2} t^2 \cos(\gamma \mu B_{int.c} t + \varphi) \right]$$

$$A_{pc} \exp \left[- \frac{\sigma_{pc}^2 t^2}{2} \right] \cos(\gamma \mu B_{int,pc} t + \varphi)$$

Here, A_c and A_{pc} denote the initial asymmetries of the sample and the pressure cell, respectively. $\gamma / (2 \pi) \approx 135.5$ MHz/T is the muon gyromagnetic ratio, φ is the initial phase of the muon-spin ensemble, and B_{int} represents the internal magnetic field at the muon site. The relaxation rates σ_{sc} and σ_{nm} characterize the damping due to the formation of the FLL in the SC state and of the nuclear magnetic dipolar contribution, respectively. In the analysis, σ_{nm} was assumed to be constant over the entire temperature range and was fixed to the value obtained above T_c, where only nuclear magnetic moments contribute to the muon depolarization rate σ. The Gaussian relaxation rate, σ_{pc}, reflects the depolarization owing to the nuclear moments of the pressure cell. The width of the pressure cell signal increases below T_c. As shown previously (70), this is due to the influence of the diamagnetic moment of the SC sample on the pressure cell, leading to the temperature-dependent σ_{pc} below T_c. To consider this influence, we assumed the linear combination between σ_{pc} and the field shift of the internal magnetic field in the SC state, $\sigma_{pc}(T) = \sigma_{pc}(T > T_c) + C(T)(\mu_B H_{int, NS} - \mu_B H_{int, SC})$, where $\sigma_{pc}(T > T_c) = 0.25 \mu s^{-1}$ is the temperature-independent Gaussian relaxation rate. $\mu_B H_{int, NS}$ and $\mu_B H_{int, SC}$ are the internal magnetic fields measured in the normal and in the SC state, respectively. As indicated by the solid lines in Fig. 1 (C and D), the μSR data were well described by Eq. 4. The good agreement between the fits and the data demonstrates that the model used describes the data rather well.

Analysis of $\lambda(T)$

$\lambda(T)$ was calculated within the local (London) approximation ($\lambda \gg \xi$) by the following expression (39, 40)

$$\lambda^{-2}(T, \Delta_0, \varphi) = 1 + \frac{1}{\pi} \int_0^{\pi} f_\varphi \left(\Delta \right) \frac{d\varphi}{dE} \sqrt{E^2 - \Delta(T, \varphi)^2}$$

where $f = [1 + \exp(E/k_B T)^{-1}$ is the Fermi function, φ is the angle along the Fermi surface, and $\Delta(T, \varphi) = \Delta_0 \Gamma \langle T/T_0 \rangle \delta(\varphi)$ (Δ_0 is the maximum gap value at $T = 0$). The temperature dependence of the gap was approximated by the expression $\Gamma(T/T_0) = \tanh \left[1.82 \left| 1.018 (T/T_0 - 1) \right|^{0.51} \right]$ (41), while $\delta(\varphi)$ describes the angular dependence of the gap and it is replaced by 1 for both an s-wave and an s + s-wave gap and |cos(2φ)| for a d-wave gap.

Acknowledgments: The μSR experiments were carried out at the Swiss Muon Source (SμS) Paul Scherrer Institute, Villigen, Switzerland. Funding: Z.G. acknowledges the financial support by the Swiss National Science Foundation (SNF fellowship P300P2-177832). The work at the University of Zurich was supported by the Swiss National Science Foundation under grant no. P200P2_174015. Work at Department of Physics of Columbia University was supported by U.S. NSF DMR-1436095 (DMREF) and NSF DMR-1610633. M.Z.H. was supported by U.S. DOE/BES grant no. DE-FG-02-05ER46200. R.K. acknowledges the Swiss National Science Foundation (grants 200021_149486 and 200021_175935). A.N. acknowledges funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement no. 701647. Author contributions: Project planning: Z.G. and F.O.v.R. Sample growth: F.O.v.R. and C.W. Experiments and corresponding discussions: Z.G., J.-C.O., R.K., Z.S., A.N., A.R.W., A.N.P., J.C., M.Z.H., A.A., H.L., and Y.J.U. μSR data analysis: Z.G. Data interpretation and draft writing: Z.G. and F.O.v.R. with contributions and/or comments from all authors. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper. Additional data related to this paper may be requested from the authors.

Submitted 6 November 2018
Accepted 17 September 2019
Published 29 November 2019
10.1126/sciadv.aav8465

Unconventional scaling of the superfluid density with the critical temperature in transition metal dichalcogenides

Sci Adv 5 (11), eaav8465.
DOI: 10.1126/sciadv.aav8465