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ability rather than the low volatility of DMSO that improves perovskite 
crystallinity.

Figure 3F summarizes the allowed blade coating speed to form 
high-quality perovskite films with N2-knife–assisted blading method 
using different solvents or solvent mixtures, determined experi-
mentally. The N2-knife was operated under pressures below 20 psi. 
The “high quality” refers to being uniform and compact enough 
for module fabrication. As discussed, pure DMSO as the solvent 
requires a very slow coating speed below 2 mm/s. The coating speed 
can increase to 40 mm/s when using 2-ME as the main solvent. 
With the addition of ACN at a volume ratio of 3:2 for the ACN:2-ME 
mixed solvent, the coating speed is further increased to 99 mm/s, 
which is the upper limit speed of the blade coater. Note that the 
viscosities of 2-ME and ACN are smaller than that of DMSO (fig. S5), 
so this ink formulation brings down the solution viscosity. One 
consequence of reduced viscosity is a thinner as-coated solution 
film is obtained, while we can adjust coating speed and solution 
concentration to increase the film thickness (32). The process of 
blade coating a perovskite film on flexible Corning glass with an 
area of ~225 cm2 at room temperature and a speed of 99 mm/s is 
recorded, as shown in movie S1. Photographic image of a bladed 
MAPbI3 film on a flexible Corning glass with an area of 225 cm2 is 

shown in Fig. 3G. This is 20 times faster than a recently reported 
N2-knife–assisted method (33).

We fabricated perovskite modules using the blade-coated perovskite 
films. The device structure is ITO/PTAA/MAPbI3/fullerene (C60)/
bathocuproine (BCP)/metal cathode. Here, the PTAA layer was also 
blade-coated, and other layers were deposited by thermal evaporation. 
Small-area single cells could reach a high PCE of 21.3% with a VOC of 
1.13 V, a JSC of 23.0 mA/cm2, and a fill factor (FF) of 81.8% (Fig. 4A). This 
is the best reported device performance for MAPbI3-based devices, 
regardless of the fabrication methods, highlighting the advantage of 
the blading method reported here (34). We then fabricated large-area 
solar modules. The J-V curves for a champion module under 1-sun 
illumination with an aperture area of 63.7 cm2 are shown in Fig. 4B, 
which have little hysteresis. The VOC, ISC, FF, and PCE values are 
summarized in the inserted table. The efficiency statistics of 18 modules 
fabricated consecutively are summarized in Fig. 4C. Approximately 
90% of the modules have efficiencies of 15 to 17%, showing the highest 
reproducibility among perovskite module fabrication methods so far 
(15, 30). We investigated device uniformity along lateral direction 
(parallel to blade coater) and coating direction, as shown in fig. S6. 
The results show that the distribution of device efficiencies is rather 
uniform in both lateral and coating directions. We sent five modules 

Fig. 3. Morphology and crystallinity of the perovskite films. (A) SEM images of perovskite films prepared with different solvent or solvent mixtures. 
(B) Cross-sectional SEM images of perovskite films prepared with different solvent mixtures. (C) XRD spectra of as-coated perovskite films from different solvent 
or solvent mixtures. (D and E) XRD spectra of annealed perovskite films prepared with different solvent mixtures. Red, ACN:2-ME; black, ACN:2-ME:DMSO. a.u., 
arbitrary units. (F) Maximum coating speed for obtaining high-quality large-area perovskite films when different solvents are applied in N2-knife–assisted 
blade-coating process. (G) Photograph image of an as-coated perovskite film on 15 cm by 15 cm flexible substrate. Photo credit: Yehao Deng, University of North 
Carolina Chapel Hill.
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to National Renewable Energy Laboratory (NREL) for certification. 
All of them have stabilized efficiencies above 15.9%, and the champion 
efficiency is 16.4%, which is a record of all reported perovskite modules 
with comparable area (fig. S7). Note that the certification was conducted 
by stabilizing the module around maximum power point (MPP) 
for 1 hour. The long-term operational stability of an encapsulated 
perovskite module is presented in Fig. 4D. The module was loaded at 
MPP, and its PCEs were measured periodically. After illumination 
for over 1000 hours under 1-sun equivalent light intensity [no ultraviolet 
(UV) filter], the module retained 87% of its peak efficiency of 15.8%. 
This is the best stability reported for perovskite modules under real 
operational conditions with PCE above 12% (18). We also investigated 
the performance of one module under reduced light intensity, and 
the measurement results are shown in fig. S8. The PCE of the module 

remains 16 to 17% under light intensity from 1 to 0.05 sun. Therefore, 
the solar module can function well under different light intensity and 
is promising for room light energy harvesting. As shown in fig. S8D, 
a ~360 cm2 submodule can charge an iPhone even in a cloudy day.

Temperature coefficient PCE is an important parameter that 
characterizes the module efficiency under real working conditions, 
where the temperature can easily rise to above 50°C. As temperature 
increases, the saturated dark current increases that lead to reduced 
VOC and efficiency (35). Under AM1.5G illumination, the measured 
temperature coefficient of the perovskite module in the temperature 
range of 25° to 85°C is −0.13%/°C (Fig. 4E). The efficiency loss 
mainly comes from VOC, which has the same coefficient (Voc) of 
−0.13%/°C, while FF and ISC remain nearly unchanged (fig. S9). The 
efficiency of the module remains to be the same as that before testing 

Fig. 4. Performance characterizations of perovskite solar modules. (A) J-V curve of a small-area perovskite solar cell fabricated with the N2-assisted room-temperature 
blade-coating method. (B) I-V curve of the champion perovskite module. (C) Distribution of efficiencies of 18 modules fabricated consecutively. (D) Long-term operational 
stability of an encapsulated perovskite module loaded at MPP under 1-sun equivalent illumination. (E) Averaged PCEs of perovskite modules measured at different 
temperatures from 25° to 85°C with a fitted temperature coefficient of −0.13%/°C. The efficiency of a typical silicon module in the market is also added for reference, which 
has an efficiency of 17% at 25°C and a temperature coefficient of −0.44%/°C. (F) Efficiencies of a perovskite module with one subcell going through 58 cycles of shading/
de-shading. The inset shows schematically how shading is applied over one subcell.
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when the temperature was reduced to 25°C, excluding degradation of 
the perovskite modules. This temperature coefficient is smaller than 
that of CdTe (−0.28%/°C), copper indium gallium selenide (CIGS) 
(−0.32%/°C), and crystalline silicon (c-Si) (−0.44%/°C) (36) as solar 
cells with larger VOC generally have smaller Voc (35). The low tem-
perature coefficient of perovskite modules makes them even more 
efficient than silicon modules under real operation temperatures 
above 55°C (Fig. 4E).

Shading effect is another important factor that limits PV mod-
ule performances in real applications (17, 37). The shaded subcells 
block the photocurrent of the whole module when subcells are 
connected in series. The shaded subcells could be burned by the 
bias generated from other subcells to resume photocurrent output. 
Silicon solar modules have large breakdown voltages over 15 V 
(38, 39), and CdTe and CIGS solar modules have lower breakdown 
voltage below 10 V. More than 50% of power for those solar mod-
ules is lost after breakdown even with a shading area of only ~10% 
(38, 39). Besides, the breakdown results in permanent damage to 
CdTe and CIGS modules and PCE loss of 4 to 14% after 20 s of 
shading (40, 41). Here, we mimicked the extreme case that one 
subcell in the module was entirely shaded, while all other subcells 
were exposed to 1-sun illumination (Fig. 4F, inset). The break-
down of the shaded subcell was observed during MPP tracking 
over 2 to 4 min (fig. S10). After breakdown, the module resumes 
its power generation with a small power loss of relatively 6.0%, 
which is proportional to the nominal area reduction (6.25%). This 
means that the shaded subcell does not negatively affect the re-
maining subcells in the perovskite module. To evaluate the dam-
age, one module was shaded for 4 min. The module recovered 
almost 100% of its original power output when shading was re-
moved, indicating no permanent damage. We performed >50 cycles 
of shading/de-shading on the same subcell of a module. A slight 
reduction of PCE from 15.7 to 15.1% is observed after the first 
20 cycles, and then, the module PCE stabilizes in the following 
cycles (Fig. 4F and fig. S10). A recent study on reverse bias behavior 
of a single perovskite solar cell pointed out that ion migration 
would induce tunneling breakdown (37). The lack of permanent 
damage after recovery and a low breakdown voltage of ~0.4 V 
support this mechanism (fig. S10E). Ion migration is a unique 
property in halide perovskites, which explains why perovskite 
solar modules have such superior shading tolerance relative to 
other commercial PV modules. Confining ions within perovskite 
layer may avoid undesired degradation process such as perovskite 
decomposition and degradation of adjacent layers (42) but still 
preserve good shading tolerance, which requires ions to migrate 
just within the perovskite layer.

DISCUSSION
In summary, we have demonstrated fast blade coating of large-
area perovskite films at room temperature. Using volatile host 
solvents allows for quick formation of compact perovskite films 
with the assistance of N2-knife. The added coordinating solvents 
slowly release from the as-coated solid film, giving enough time 
for the perovskite grains to grow into large sizes with high crys-
tallinity and good contact to substrate. A coating speed as high 
as 99 mm/s has been realized, yielding perovskite modules with 
a certified stabilized PCE of 16.4% with an aperture area of 63.7 cm2. 
The as-fabricated modules also show superior temperature and 

shading effect tolerance compared to commercialized PV tech-
nologies including c-Si, CdTe, and CIGS, which increase the com-
petitiveness of perovskite PV in the future PV market.

MATERIALS AND METHODS
Materials
All chemicals were purchased from Sigma-Aldrich unless otherwise 
specified and used without further purification. Methylammonium 
iodide was purchased from GreatCell Solar. Methylammonium hypo-
phosphite was synthesized according to our previous publication (43).

Device fabrication
Prepatterned ITO/glass substrates were washed with detergent, 
deionized water, isopropanol, and acetone sequentially and dried in 
an oven at 60°C overnight. PTAA/toluene solution was blade-coated 
on UV-ozone–treated ITO/glass substrate at 20 mm/s with 200-m 
coating gap. Then, perovskite layer was blade-coated with air knife 
blowing at room temperature. The solution composition was ~1.0 M 
MAPbI3 in a mixture solvent composed of ACN (60%, v/v)/2-ME 
(40%, v/v) for coating at 99 mm/s for best-performing devices. The 
molar ratio of DMSO to MAPbI3 is ~20%. l--Phosphatidylcholine, 
methylammonium chloride, and methylammonium hypophosphite 
were added into the solution as additives at molar percentages of 
~0.025, ~0.8, and ~1.0% to MAPbI3, respectively. Note that those 
additives are not required for high-speed room-temperature perovskite 
film coating here but can improve device efficiency (44, 45). The blade 
coater gap was 200 to 300 m. The air knife worked below 20 psi. 
The as-coated solid film was annealed at 70°C for several minutes 
and then at 100°C for 5 to 20 min. Then, the perovskite film was 
thermally evaporated with C60 (30 nm) and BCP (6 nm). Laser 
scribing was then performed twice before and after electrode 
deposition to complete the module fabrication. For the modules 
sent for certification, polydimethylsiloxane antireflection coatings 
were applied.

Device characterizations
The J-V measurement of perovskite modules were performed with 
the Keithley 2400 Source Meter under simulated AM1.5G irradiation 
produced by a xenon lamp–based solar simulator (Oriel Sol3A, Class 
AAA Solar Simulator). The light intensity was calibrated by a silicon 
reference cell (Newport 91150V-KG5). The scan rate was 1 V/s for 
modules and there was no preconditioning before measurement. To 
measure the long-term operational stability of perovskite module, 
the module was encapsulated, illuminated by 1-sun equivalent metal 
halide lamp, and loaded at MPP. To measure the module efficiency 
at elevated temperatures, the encapsulated module was placed on a 
large hotplate, and the temperatures of the module were measured 
with an infrared thermometer. The temperature variation over the 
module’s aperture area is less than 5°C. The SEM images were taken 
by a Quanta 200 FEG environmental scanning electron microscope. 
The XRD pattern was obtained with a Rigaku sixth generation 
MiniFlex X-ray diffractometer.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/12/eaax7537/DC1
Fig. S1. Photographic images of MAPbI3 solutions prepared by dissolving in 2-ME or ACN/2-ME 
solvent at room temperature and then heated to 80°C.
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Fig. S2. SEM images of N2 knife–assisted blade-coated perovskite films using DMF, GBL, 2-ME, 
ACN:2-ME, and ACN:2-ME:GBL as solvents.
Fig. S3. XRD spectra of as-coated films deposited from DMF-, GBL-, or 2-ME–based solutions.
Fig. S4. UV-vis absorption spectra of perovskite precursor solution based on VNCS with a little 
DMSO added.
Fig. S5. Viscosity of ACN, 2-ME, and DMSO solvents.
Fig. S6. The efficiency uniformity over a perovskite module. 
Fig. S7. NREL certification of a perovskite submodule with an aperture area of 63.7 cm2 and a 
stabilized efficiency of 16.4%.
Fig. S8. The performance of a perovskite module under low intensity sun light illumination.
Fig. S9. The performance of a perovskite module at elevated temperatures.
Fig. S10. The performance of a perovskite module experiencing shading effect.
Movie S1. Room-temperature blade coating of perovskite film at 99 mm/s.
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