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Experimental learning of quantum states
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Iris Agresti5, Marco Bentivegna5, Fabio Sciarrino5*

The number of parameters describing a quantum state is well known to grow exponentially with the number of
particles. This scaling limits our ability to characterize and simulate the evolution of arbitrary states to systems,
with no more than a few qubits. However, from a computational learning theory perspective, it can be shown
that quantum states can be approximately learned using a number of measurements growing linearly with the
number of qubits. Here, we experimentally demonstrate this linear scaling in optical systems with up to 6 qubits. Our
results highlight the power of the computational learning theory to investigate quantum information, provide the first
experimental demonstration that quantumstates canbe “probably approximately learned”with access to anumberof
copies of the state that scales linearly with the number of qubits, and pave theway to probing quantum states at new,
larger scales.
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INTRODUCTION
The exponential scaling of the wave function, arising from the tensor
product description of multiparticle states, is one of the remarkable
properties of quantum systems, and if exploited correctly, it is instru-
mental in powering the computational advantages theorized in quan-
tum information processing. On the other hand, an exponentially
increasing computational space makes the evolution of quantum
systems hard to simulate with classicalmethods. For example, calculating
a single amplitude exactly is known to be a #P-hard problem (1), where
#P can be viewed as the counting equivalent of NP.

Some of the limitations set by the exponential scaling of the wave
function can be formalized in quantum-state tomography (2–8). The
central task of quantum-state tomography is to produce a description
of an n-qubit state given the ability to prepare and measure k of its
copies. Characterizing anunknownquantum state is a fundamental tool
in quantum information processing. A survey of the major applications
and present challenges in state tomography can be found in the review
by Banaszek et al. (2). State estimation is, in general, an expensive
procedure. For an arbitrary n-qubit quantum state, it can be shown that
estimating the ideal state up to an approximation parameter e requires
W(4n/e2) operations (3). Prior information plays an important role in
any procedure seeking to characterize a quantum state. In quantum-
state tomography, for example, knowing that the state is low rank (4, 8),
or that it has a matrix product state structure (7), can reduce the com-
putational cost of the procedure to polynomial in the number of qubits.
More generally, self-testing (9), a type of device-independent state char-
acterization, is possible only for specific class of states, such as multi-
partite qubit states that admit a Schmidt decomposition (10), whose
structure is known a priori. Despite the existence of these efficient
protocols, there is no hope of overcoming the exponential scaling for
general unknown quantum states. Given this difficulty, it is valuable
to interpret quantum-state tomography as a learning problem, with
the hope of using the well-developed machinery of computational
learning theory, for optimizing the number of required measurements.
Computational learning theory (11, 12) is a research field devoted
to studying the design and analysis of machine learning algorithms.
Particularly relevant for our purposes is supervised machine learning.
Here, the learner is presented with a number of examples consisting
of input-output pairs and is subsequently assigned the task of predicting
the output of a new input. Thismodel of learning has been formalized in
computational learning theory by Valiant in 1984 (13) with the intro-
duction of the probably approximately correct (PAC)model. A defining
feature of this setting is that the accuracy of the learner is measured
under the same probability distribution that models the training set.
ThePAC framework provides two indicators of the efficiency of a learner:
the sample complexity and the time complexity. The first is the worst-
case number of examples it uses to reach some target competency, while
the second one is the worst-case running time of the learner. In this
article, we are concerned with the sample complexity of the problem
of learning quantum states.

Quantum-state tomography can be cast as a learning problem.
In this perspective, the learnermakes use of the training set to produce a
hypothesis that can predict any measurement on the state. Here lies a
crucial difference with the setting defined in the PAC model where
the learner can predict, and with a nonzero failure probability, only
measurements that are similar to those seen in the training set. Since
quantum-state tomography requires an exponentially large number of
measurements, wemight conclude that the same applies to the problem
of PAC learning quantum states.

Computational learning theory, and in particular the PAC model,
can help to address these conundrums. By analyzing quantum-state
tomography from a computational learning perspective, Aaronson
(14) proved that quantum states can be PAC-learned with a linearly
scaling training set. Note that quantum-state tomography is inherently
different from the PAC framework discussed in this paper. While in
the first setting, the task is to predict the outcome probabilities of any
measurement performed on the state, in the latter, the learner is only
required to predict measurements sampled from an unknown prob-
ability distribution. Within the boundaries of this precise definition
of learning, it is possible to think of quantum states as having linear
sample complexity. Here, we present the first experimental demon-
stration of such linear scaling. Our contributions also include develop-
ing a testablemodel for themain theoremproved in (14) and estimating
an important scaling constant. We run the experiments on a photonic
platform including up to 6 qubits. Our results experimentally demon-
strate an important property of quantum states and highlight the
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RESULTS
Quantum learnability theory
Let us recall some standard definitions in quantum theory. A
generic n-qubit state r is a trace-one, positive semidefinite matrix
acting on a Hilbert space of dimension 2n. Every observation of a
state is mathematically described by a positive operator valued mea-
surement (POVM), E = {E( j)}, where each E( j) is a Hermitian-positive
semidefinite operator such that ∑jE

( j) = I. The probability of measure-
ment outcome j is p(j) =Tr(E( j)r). For our purposes, we refer to a mea-
surement of r as a two-outcome POVM {E(1) = E, E(2) = 1 − E} with
eigenvalues in [0, 1] (notice that the results presented below can be
extended to the case of k-outcome POVMs). We denote byS the set
of all measurements on n qubits.

Following (14), we define the learning of r as the task of processing
a training set composed of m tuples {(Ei, Tr(Eir))}, drawn from a
probability distributionD, to predict the “behavior” of r onmost mea-
surements drawn from D. This concept of learning is defined in the
context of Valiant’s PACmodel (13). In this framework, originally de-
veloped for Boolean functions but then extended to real-valued ones
byBartlett et al. (15), a learning algorithm (the learner) tries to approx-
imate with a high probability an unknown function f : X→Y from a
training set of random-labeled examples. Each labeled example is of
the form (x, f(x)), where x is distributed according to some unknown
distribution D. To make learning possible, we restrict the hypothesis
that the learner can use to approximate f to a set of functions H ¼
fh : X→Yg. We refer to H as the hypothesis class. The learning
algorithm takes as input the training set and generates a hypothesis
h ∈H that approximates f. The PACmodel makes use of two approx-
imation parameters, e and d. The accuracy parameter e determines
how far the hypothesis h can be from f. The confidence parameter
gives the probability of sampling a training set that is not representa-
tive of the underlying distributionD. A hypothesis classH is said to be
PAC learnable if there exists an algorithm that, for every probability
distributionD and function f and for every e, d ∈ (0, 1); when running
the learning algorithm onm ≥mH examples drawn fromD, we have
that, with a probability of at least 1 − d

Pr
xeD½hðxÞ ≠ f ðxÞ� ≤ e

Here, by ~, we indicate that x is drawn from D. The value mH
determines the minimum number of examples required to PAC-
learn the class H. We refer to mH as the sample complexity of the
hypothesis classH. We note that the learner must test the predictions
under the same distribution D that determines the elements in the
training set.

The PAC-model has been adapted to quantum states in (14). Here,
the learner tries to approximate a function Fr : S→½0; 1�, where Fr is
defined asFr Eð1Þ

i

� �
¼ Tr Eð1Þ

i r
� �

. The training set corresponds to a set

of m tuples Eð1Þ
i ; Fr Eð1Þ

i

� �� �n o
. Notice that we always take the first

elementEð1Þ
i of each POVM Ei. For this reason, in the following, we take

Eð1Þ
i ¼ Ei. ThePOVMs {Ei} are drawn fromanunknowndistributionD,

and the Fr(Ei) values are determined experimentally. After processing
Rocchetto et al., Sci. Adv. 2019;5 : eaau1946 29 March 2019
the training set, the learner outputs an hypothesis state s. Notice that an
efficient learner must output an efficient classical description of the hy-
pothesis. A quantum state is considered to be learned if, with probability
1 − d, a training set generated according to the distribution D can be
used to predict with probability e and accuracy g any other measure-
ment drawn from D

Pr
E∈D

½jTrðEsÞ � TrðErÞj > g� ≤ e ð1Þ

A pictorial description of this learning procedure is shown in Fig. 1.
Because s is a 2n × 2n-dimensional matrix, we would expect that the
number of examples in the training set required to learn r also scales
exponentially. However, it has been proved (14) that the number of
examples required to learn Fr scales linearly with n and is polynomially
inverse with the relevant error parameters (a full statement of the
theorem is given in Materials and Methods; in the following, we shall
refer to theorem as Theorem 1). More specifically, keeping the error
parameters e, g, and d fixed, we can PAC learn a quantum state
provided

m≥
K

g4e2
n

g4e2
log2

1
ge

þ log
1
d

� �
ð2Þ
Fig. 1. Schematic of the learning procedure. (Top) In the learning phase, measure-
ments drawn randomly fromD are performed on the physical state r. On the basis of
themeasurement outcomes, the learning algorithm outputs a hypothesis s. (Bottom)
In the prediction phase, the goal is to predict the experimental outcome of a measure-
ment E ′ drawn from D using s as hypothesis.
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Fig. 2. Experimental setups for generating the 3-, 4-, 5-, and 6-qubit GHZ states. Pictorial representation of the two different experimental setups used to generate the
quantum states learned with Theorem 1. In setup (I), we make use of two photons and encode up to 4 qubits. In setup (II), we make use of four photons and encode up
to 6 qubits. (I) In the generation stage, the state of each of the two entangled photons (1 and 2) is locally manipulated via QWPs, HWPs, and q-plates, set to generate a
specific GHZ state. The analysis is performed using QWPs, HWPs, and polarizing beam splitters (PBSs). The orbital angular momentum (OAM) analysis requires a q-plate
to transfer the information encoded in the OAM space to the polarization degree of freedom, which can be then analyzed with standard techniques. After the analysis,
both photons are sent to single-mode fibers (SMFs) connected to single-photon detectors. (II) Two polarization-entangled photon pairs are generated via SPDC in two
separated nonlinear crystals. Photons A and D of the first and second pair, respectively, are sent directly to a HWP and a PBS for polarization analysis. Photons B and C
instead are sent to a 50/50 in-fiber PBS followed by another PBS, which realizes the polarization-path entanglement. The two paths go through two HWPs and are
rejoined in the same PBS, forming a Sagnac-like configuration, whose main role is to guarantee phase stability and perform path-polarization measurements inde-
pendently. A motorized delay line is adopted to change the photons wave-packet temporal overlap in the PBS. Each path analysis section is composed of a HWP and a
PBS after which the photons are coupled into SMFs connected to single-photon detectors. Generation and analysis sections are represented by cyan and gray zones,
respectively.
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where K is a constant. This result provides an upper bound on the
number of measurements required to learn a quantum state with re-
spect to any probability measure over two-outcome POVMs. The value
of K is left unbounded, but it is critical for applying the theorem in an
experimental setting.

The learning procedure prescribed by Theorem 1 is simple and it
involves finding a hypothesis state s such that Tr(Eis) ≈ Tr(Eir) for
all i. Then, with high probability, that hypothesis will generalize in
the sense that Tr(Es) ≈ Tr(Er) for most E’s drawn from D. It is then
possible to interpret the problem of finding a mixed n-qubit state
that approximately agrees with themeasurements as an optimization
problem.

The optimization problem takes as input m POVMs described by
Hermitian matrices {E1,…, Em} and their corresponding measurement
outcomes {Tr(E1r), …, Tr(Emr)}. The goal is to find a Hermitian-
positive semidefinite matrix s that minimizes

f ðsÞ ¼ ∑
m

i¼1
ðTrðEisÞ � TrðEirÞÞ2 ð3Þ

s ≥ 0; TrðsÞ ¼ 1

where, by s ≥ 0, we denote the positive semidefiniteness of s.
The above formulation is a convex program whose solution is

known to be computable in polynomial time in the dimension of s
using interior pointmethods (16, 17) or the ellipsoidmethod (18).How-
ever, because the dimension of s scales exponentially with n, the problem
of finding theminimum of f(s) is, in practice, not efficiently computable.
This is still compatible with the linear scaling of Theorem1 (seeMaterials
and Methods) because the results proved in (14) are purely information
theoretic and are concerned only with the sample size m. For any given
class of quantum states, the question of whether hypothesis states can be
produced efficiently is still open. In this context, Rocchetto (19) recently
proved that stabilizer states are efficiently PAC learnable.

Last, we note that learning a quantum state is not a complete repla-
cement for standard quantum-state tomography. The PAC-learning
framework of Theorem1 tests the predictions over the samedistribution
of the training set; a goodhypothesis state could be arbitrarily far from the
true state in the usual trace distance metric, but hard to distinguish from
the true state with respect to the given distribution over measurements.

Experimental setup
We test the learning Theorem 1 over different Greenberger-Horne-
Zeilinger (GHZ) states (20) (see Materials and Methods for a defini-
tion). There are several methods to produce GHZ states (21–25) in
photonic systems. To scale up to 6 qubits, we use two different ap-
proaches: The first one aims to increase the number of degrees of
freedom per photon, while the second one exploits an increasing
number of photons (see Fig. 2). In setup (I), we generate two-photon
states, encoding up to 4 qubits, and perform a full set of measurements
in the computational basis. In setup (II), we generate four-photon states,
able to encode up to 6 qubits. Both setups exploit spontaneous parametric
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DISCUSSION
Our work experimentally demonstrates that quantum states that
are close to GHZs, as a hypothesis class, are PAC learnable under
two nontrivial probability distributions. This result, first proved in
(14), shows that a number of copies of the state that grows poly-
nomially with the number of qubits is sufficient to PAC-learn the
state. This is in marked contrast with the, much stronger, tomographic
setting where, for an arbitrary quantum state, the number of copies
must grow exponentially. The line of research that seeks to establish
how much information is really contained in a quantum state, and
thereby to gain insight about the reality of the wave function, has re-
cently found a new addition in the “shadow tomography” protocol
proposed by Aaronson (31). This protocol can predict the outcomes
of M different two-outcome measurements on a D-dimensional state,
to high accuracy, by measuring only poly(log(D), log(M)) copies of the
state. An experimental demonstration of this protocol is a natural
future direction and would be a valuable addition to our physical
comprehension of these theoretical results.

From a broader perspective, our work constitutes an example of
how the techniques developed in the framework of computational
learning theory can be used within quantum information. The in-
Rocchetto et al., Sci. Adv. 2019;5 : eaau1946 29 March 2019
terplay of these two fields, recently surveyed by Arunachalam and
de Wolf (32), can offer new tools to investigate properties of quantum
states and circuits and can help to identify cases in machine learning
where classical and quantum computation behave differently. This is
particularly important in light of the recent advances in quantum al-
gorithms for machine learning [recently reviewed by Biamonte et al.
(33) and by Ciliberto et al. (34)] where, despite the growing interest for
the topic, it is still unclear whether caveat-free speedups can be at-
tained [for a critical discussion, see (34, 35)].
MATERIALS AND METHODS
The learning theorem
The theorem proved in (14) states:

Theorem 1. Let r be an n-qubit state, let D be a distribution over
two-outcomemeasurements, and let e = (E1,…, Em) consist ofmmea-
surements drawn independently fromD. Suppose that we are given bits
B = (b1,…, bm), where each bi is 1 with independent probability Tr(Eir)
and 0 with probability 1 − Tr(Eir). Suppose also that we choose a
hypothesis state s to minimize the quadratic functional f ðsÞ ¼
∑m

i¼1ðTrðEisÞ � biÞ2. Then, there exists a positive constant K such that

Pr
E∈D

½jTrðEsÞ � TrðErÞj > g�≤ e

with a probability of at least 1 − d over E and B, provided that

m≥
K

g4e2
n

g4e2
log2

1
ge

þ log
1
d

� �

Here, rather than working with single-measurement outcomes bi,
we are concerned with estimated expected values

TrðEirÞ≈ ∑
S

j¼1
bðjÞi =S

where eachbðjÞi is the jthmeasurement outcome corresponding to Ei. To
show that the hypothesiss generated by considering the expected values
is equivalent to that obtained by taking the measurements outcome bi,
we define

f ′ ¼ ∑
m′

i¼1
ðTrðEisÞ � TrðEirÞÞ2
Fig. 5. Experimental demonstration of Theorem 1. Scaling of size of the training
set m required to learn a GHZ state as a function of the number of qubits n. Experi-
mental data points (red crosses) are obtained using the experimental setup (II). Each
data point is obtained using 50 different, randomly generated sets of measurement
configurations drawn from DðIIÞ (see Materials and Methods for further details). Error
bars show the SD for an averageof 10different runs of the algorithm toestimatem. The
red line is a linear fit on the experimental data points with equationm = 1.19n − 0.34.
The learning parameters are e = 0.15, g = 0.2, and d = 0.2.
Fig. 4. Measurement complexity of error parameters. Dependence of m on the error parameters for learning 4-qubit GHZ states generated with setup (I). Learning is per-
formedunder the distributionDðIÞ (seeMaterials andMethods for further details), and eachdata point is an average over four differentGHZ states.When a given error parameter is
changed, the other ones are kept constant at the following values d = 0.1, g = 0.1, and e = 0.05. (Left) Scaling of d. (Center) Scaling of g. (Right) Scaling of e.
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If we take m =m′S and solve for s, then in the equations df/ds = 0
and df ′/ds = 0, it is possible to verify that the hypothesis that mini-
mizes the function f′ is also satisfying f.

The learning distributions
We used different learning distributions for the two experimental
setups, DðIÞ and DðIIÞ. The distribution DðIÞ is uniform over the set of
stabilizer measurements (36) of the GHZ state minus the identity matrix.
The distributionDðIIÞ is uniform over the set of stabilizer measurements
inX andZ of theGHZ stateminus the identitymatrix. AGHZ state (20)
is a type of stabilizer state. A stabilizer state |y〉 is the unique eigenstate
with eigenvalue +1 of a set of N commuting multilocal Pauli opera-
tors Pis, that is, Pi|y〉 = |y〉, where Pi =⊗ jwj andwj ∈ {I, s

x, sy, sz} are
the Pauli matrices. We define the Pi as the stabilizers of the state.

There are 2n different stabilizers for an n-qubit stabilizer state. Be-
cause one of the stabilizers is always the identity (whose eigenvalue is
1 for every state), we chose not to include this measurement in those
sampled by D.

Each Pi is a two-outcome observable (with eigenvalues +1 or −1).
We constructed the POVM elementsEð1Þ

i andEð2Þ
i of the observable

Pi by noting that E
ð1Þ
i þ Eð2Þ

i ¼ I and Eð1Þ
i � Eð2Þ

i ¼ Pi. The POVM el-
ement Eð1Þ

i can be then written as Eð1Þ
i ¼ ðI þ PiÞ=2.

The set of stabilizers of a state form a group under the operation of
matrix multiplication. To represent a state, it is then sufficient to con-
sider then stabilizers that generate this group. For ann-qubit state, there
are n elements in the set of generators.

The high variance around m = 4 in Fig. 3 can be explained in the
followingway: Each data point was obtained by averaging over a number
of different configurations sampled fromDðIÞ. It is then likely to sample a
configuration that includes two generators and two other stabilizers
that can be obtained by the product of the generators. It is easy to see
how the information content of such a configuration is less than the
one where four independent stabilizers are sampled. This will, in
turn, limit the ability of s to output good predictions and will gen-
erate the high variance in the data.

Numerical simulations
Weminimized the function f over the positive semidefinite matrices of
unit trace, with a variant of the Frank-Wolfe algorithm (37) developed
by Hazan (38). All our simulations were performed using 300 iterations
of the Hazan algorithm.

Experimental details
For the experimental setups of Fig. 2, a pump laser with l = 397.5 nm
was produced by a second harmonic generation process from a Ti:
Sapphire mode locked laser with a repetition rate of 76 MHz. Photon
pairs entangled in the polarization degree of freedomwere generated by
exploiting a type II SPDC in 2-mm-thick b-barium borate crystals. The
photons generated by SPDC are filtered inwavelength and spatialmode
by using narrow band interference filters and SMFs, respectively. After
coupling into SMFs, the spatial mode becomes a fundamental Gaussian
mode (TEM00) with a null-associated OAM.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/3/eaau1946/DC1
Supplementary Appendix A. Theorem 1 with expected measurement values
Supplementary Appendix B. Algorithm to estimate the scaling of m
Supplementary Appendix C. The Hazan’s algorithm
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