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Upon apoptotic stimulation of our caspase-3/7 double-knockout 
cell lines, we also observed a strong decrease in apical caspase-8 
and -9 activation. This adds to a growing body of evidence to indicate 
that effector caspase feedback increases apical caspase activation. 
Cell-free systems have shown significantly reduced caspase-9 cleavage 
in the absence of caspase-3 (18, 33), although caspase-8 seems to be 
less sensitive to a caspase-3 activity in a similar system (13). Direct 
cleavage of upstream caspases by caspase-3 or 7 does not only necessarily 
result in activation, particularly in the context of caspase-9 but also 
involves general disinhibition of caspases through effector caspase-
mediated cleavage of the endogenous caspase inhibitor XIAP (12, 34, 35). 
Whether through direct cleavage or indirectly through deactivation 
of inhibitory molecules, the data presented here clearly demonstrate 
that caspase-3 and -7 act as essential and redundant signal amplifiers 
of both apoptotic programs within intact leukemia cells. This corrob-
orates earlier data in normal hematopoiesis obtained in mice (36), 
where deletion of caspase-3 and -7 results in some defects in the he-
matopoietic system (16, 37) and where absence of caspase-9 leads to 
severely affected hematopoietic stem cell function (38, 39) and 
confers resistance to infection by RNA and DNA viruses (40).

Mitochondrial outer membrane permeabilization is a microcosm 
of the larger apoptotic program, in that it directly disrupts the cellu-
lar process of mitochondrial energy production while also providing a 
signal to increase apoptotic signaling through release of cytochrome c 
(41). In the absence of caspase-9 or -3/7 expression, we observed that 
cells were able to maintain mitochondrial membrane potential and 

show limited cytochrome c release after treatment with direct inhibitors 
of BCL2. Similar results were previously shown using caspase-3/7 
double-knockout mouse embryonic fibroblasts (16). Similar to previous 
observations (42), we also saw a consistent decrease in mitochondrial 
polarization following apoptotic induction in caspase-3/7–deficient 
cells, suggesting that in the absence of effector caspase feedback, 
caspase-9 and BCL2 family proteins will reach a new equilibrium 
state without triggering full depolarization. Similarly, partial cyto-
plasmic cytochrome c following ABT263 treatment has also been 
observed in caspase-9–deficient cells (22). Such feedback control of 
mitochondrial activity will have to be taken into account when inter-
preting BH3 profiling results and apoptotic dependencies (43). These 
data support a model wherein feedback regulation lies at the heart of 
the apoptotic program, wherein caspase-9 and casp-3/7–dependent 
cleavage of antiapoptotic BCL2 family members enhances mitochon-
drial depolarization and release of cytochrome c (15, 23, 24).

Here, we have provided a systematic deconstruction of the caspase 
network in human leukemic cell lines. We show how caspase-3 and -7 
specifically function as a redundant central node in this network, with-
out which cells fail to fully activate upstream elements of the apoptotic 
process. Ultimately, it is these interconnected feedback loops that 
integrate pro- and antiapoptotic signals into the all-or-none apoptotic 
switch and regulate the cellular response to perturbations of cellular 
homeostasis (Fig. 6G). Thus, effector caspase-3 and -7 are crucial and 
redundant amplifiers of the apoptotic signal, where the presence 
of either one is sufficient for full activation of both upstream and 
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Fig. 5. Simultaneous absence of caspase-3 and -7 is required for significant decrease of caspase-8 and -9 activation in intrinsic apoptosis. (A) NALM6 WT or 
caspase-3/7−/− cells were left untreated or treated for the indicated time with ABT263 5 M. Cells were lysed and processed for Western blot. (B to E) NALM6 WT or 
caspase-3/7−/− cells were left untreated or treated 22 hours with ABT263 at a concentration of 5 M. WT NALM6 cells treated with ABT263 show metabolic activity 
for caspase-8 (B and C) and caspase-9 (D and E) substrates. Caspase-3/7−/− cells show no increased metabolic activity for caspase-8 (B and C) and caspase-9 (D and E) 
compared to untreated cells. Quantitation of caspase-8 and -9 activity, respectively. Histograms show representative data from at least two independent experiments 
performed in duplicate, with the mean from these ± SEM presented in the line graphs.
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downstream mechanisms of the apoptotic program. Overall, these 
results extend a significant body of work identifying feedback 
mechanisms within the apoptotic program, primarily conducted 
in mouse cells, frequently also using nonspecific chemical inhibi-
tors, and/or in acellular systems. Bringing this into living human 
cells, our data place caspase-3 and -7 at the center of a fundamen-
tally recursive apoptotic program, where these enzymes act as 
redundant signal amplifiers, essential for activation of both up-
stream and downstream apoptotic processes and efficient cell 
death.

MATERIALS AND METHODS
LC knockout of caspases
Single and multigene knockouts were generated using the multicolor 
LC system, which we have previously described (21). Briefly, sgRNA 
sequences were cloned into multicolor LC vectors via one-pot restriction-
ligation reaction using Esp3I restriction enzyme (catalog no. ER0451; 
Thermo Fisher Scientific). Various sgRNA sequences were tested 
to identify specific sequences that produced a consistent knockout 
as examined via Western blot. The following sgRNA sequences, in-
cluding PAM (protospacer adjacent motif), were chosen for CRISPR 
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Fig. 6. Caspase-3– and -7–deficient cells maintain mitochondrial membrane polarity following intrinsic or extrinsic apoptotic stimuli. (A) TMRE staining and 
(B) quantification of mean TMRE signal in NALM6 WT and caspase-3/7 knockout cells treated with ABT263 (5 M) for the indicated time points. TMRE flow cytometry 
measurements (A and C) and quantification plot (B and D) of NALM6 WT and caspase-3/7 knockout cells treated with Birinapant (50 nM) and TNF (10 ng/ml) for the indi-
cated time points. Cytochrome c release measurement by flow cytometry (E) and its corresponding quantification graph (F) of NALM6 WT and caspase-3/7 knockout cells 
untreated (control) or treated with ABT263 (5 M). Flow cytometry graphs are representative images of three independent experiments. Quantification graphs show the 
mean from three independent experiments ± SEM. (G) Graphical model of feedback activation by caspase-3 and -7 upon apoptotic stimulation. Histograms show repre-
sentative data from at least three independent experiments performed in duplicate, with the mean from these ± SEM presented in the line or bar graphs.
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targeting: caspase-3, GGAAGCGAATCAATGGACTCTGG; caspase-7, 
GAAGCACTTGAAGAGCGCCTCGG; caspase-6, AAGATTGT
CTCTATCTGCGCAGG; caspase-8, TGATCGACCCTCCGCCAG
AAAGG; caspase-9, GTTCAGGCCCCATATGATCGAGG. Target 
cells were then transduced with specific LC vectors at a multiplicity 
of infection of ~0.1 and single cell–sorted to produce single- or multi-
knockout cell lines as desired. Single-cell clones were screened via 
Western blotting for desired gene knockouts.

Cell culture
Cell lines used in this study include standard human T cell leukemia 
(Jurkat), human B cell leukemia (NALM6) cell lines, and a patient-
derived B cell leukemia cell line that we have previously reported 
[658w, (21)]. All cell lines were cultured in RPMI 1640 medium 
(catalog no. R0883; Sigma-Aldrich) supplemented with 10% fetal 
bovine serum (Sigma-Aldrich), 0.5% l-glutamine (BioConcept), 
and 0.5% penicillin/streptomycin (Life Technologies) and incubated 
at 37° until colonies reached a population size of about 5 × 105 cells/ml. 
Cells were passaged every 3 days by dilution of the cells to a concen-
tration of around 1 × 105 cells/ml.

Western blot
Cells were harvested and lysed using SDS lysis buffer [62.5 nM tris 
(pH 6.8), 1% SDS, 0.005% bromophenol blue, 4% glycerol, and 1% 
(v/v) ß-mercaptoethanol]. Samples were then vortexed and incubated 
at 95° for 5 min. Lysates were normalized to cell number and subjected 
to SDS polyacrylamide gel electrophoresis, transferred to nitrocellulose 
membranes, and blocked with buffer consisting of TBS (tris-buffered 
saline)–T with 5% fat-free milk powder. The membranes were then 
incubated with primary antibodies against caspase-3, -7, -6, -8, or -9 
(catalog nos. 9662S, 9492S, 9762S, 9746S, or 9502S, respectively; Cell 
Signaling), cIAP (catalog no. 3130; Cell Signaling), Bid (catalog no. 
2002S; Cell Signaling), or tubulin (catalog no. 081 M4861, 1:1000; Sigma-
Aldrich). After washing the membranes with TBS-T at room tempera-
ture, we then added the secondary antibodies (1:5000) EasyBlot 
anti-rabbit or anti-mouse (catalog nos. GTX221666-01 and GTX221667-
01, respectively; GeneTex). The reactive bands were visualized by 
chemiluminescence and captured using Imager Lab.

Cell viability
To quantify the number of living cells, we used Cell Counting Kit-8 
(catalog no. CK04-11, 1:10; Dojindo Molecular Technologies), con-
taining WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-
5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt]. WST-8 was 
bioreduced by cellular dehydrogenases to an orange-colored dye 
that is soluble in tissue culture medium and is directly proportional 
to the number of living cells. Suspension was incubated for 1 hour at 
37°. Viability was quantified by measuring the absorbance of color 
(450 nm) at the spectrophotometer and normalizing the data to the 
untreated cells. We also measured cell viability and membrane in-
tegrity with 7-AAD viability staining solution (catalog no. 559925; 
BD Pharmingen). Briefly, cell pellet was resuspended in 0.5 ml of 
cell staining buffer, and then 5 l of 7-AAD per million cells was added 
and incubated for 5 to 10 min in the dark before flow cytometry 
analysis.

Fluorogenic substrates
Caspase-3/7 as well as caspase-8 and -9 activity was measured using 
flow cytometry. Briefly, cells were cultured and plated in a concentration 

of 200,000 cells/ml. We then treated the cells either with ABT263 
(5 M) (intrinsic apoptotic stimulus) or Birinapant (50 nM) and hTNF 
(10 ng/ml) (B + T) (extrinsic apoptotic stimulus) for 1 to 30 hours. 
The cell suspension was centrifugated and resuspended in RPMI 
1640 to stop the reaction. Using FAM-FLICA Caspase Assay Kit 
for caspase-8 (catalog no. 910; ImmunoChemistry Technologies), for 
caspase-9 (catalog no. 912; ImmunoChemistry Technologies), and for 
caspase-3/7 (catalog no. 93; ImmunoChemistry Technologies), we 
incubated the cells in 1:30 of 1:5-diluted FLICA staining buffer for 
30 min protected from light. Fluorescence was detected by flow 
cytometry (FAM-FLICA excites at 492 nm and emits at 520 nm).

Measuring mitochondrial depolarization
For the detection of mitochondrial membrane potential changes, 
NALM6 WT and caspase-3/7−/− cells were plated on a 96-well plate, 
30,000 cells/100 l per well. Cells were then treated with 5 M ABT263 
and 50 nM Birinapant with hTNF (10 ng/ml) for 4, 18, and 24 hours. 
Cells were stained with 50 nM tetramethylrhodamine ethyl-esther 
(catalog no. 87917; Sigma-Aldrich) for 5 to 20 min, incubated at 37°C 
and 0.5% CO2, and shielded from light. Then, they were transferred 
to fluorescence-activated cell sorting tubes and diluted to 300 l 
with 1× phosphate-buffered saline (PBS) and analyzed with flow 
cytometry.

Cytochrome c release
Cytochrome c release was assessed as previously described (44). Cells 
were incubated in 1:200 mouse anti–cytochrome c antibody 
(catalog no. 556432; BD Pharmingen) and 1:200 PE Rat anti-mouse 
IgG1 (immunoglobulin G1) secondary antibody (catalog no. 550083; 
BD Pharmingen).

Drugs and chemicals
Recombinant human TNF was purchased from Gibco/Life Technol-
ogies (catalog no. PHC3011). TNF-neutralizing antibody was pur-
chased from Cell Signaling (catalog no. 7321). Birinapant was 
purchased from Selleckchem (catalog no. S7015). ABT263 (Navitoclax) 
was purchased from Selleckchem (catalog no. S1001). Z-VAD-FMK 
was purchased from ApexBio (catalog no. A1902). Necrostatin-1 was 
purchased from BioVision (catalog no. 2263-1). FasL was purchased 
from Enzo Life Sciences (catalog no. ALX-522-001-C010).

Colony-forming unit assay
Nalm6, Jurkat, and 658w WT and casp-3/7−/− cells were plated in 
3 ml of RPMI 1640 complete medium in six-well plates at a concen-
tration of 2 × 105 cells per well. The cells were then treated for 
24 to 48 hours with either Birinapant (50 nM) and TNF (10 ng/ml), 
ABT263 (5 mM), or vehicle. The cells were then collected, washed 
with PBS, mixed with Methocult Optimum media (catalog no. 4034; 
StemCell Technologies), and plated at a concentration of 1000 cells 
per well in six-well SmartDish plates (catalog no. 27370; StemCell 
Technologies). Cells were aliquoted in duplicate samples. After 
10 to 14 days, colony-forming units were visually counted under a 
microscope.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/7/eaau9433/DC1
Fig. S1. Caspase-8 and -9 are specifically required to activate extrinsic and intrinsic apoptosis, 
respectively.
Fig. S2. Caspase-3 and -7 have overlapping roles in executing apoptotic cell death.
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