










Fig. 3. Identifying the genre of movie trailers using emotional image features. (A) Emotion prediction for a single movie trailer. Time courses indicate model
outputs on every fifth frame of the trailer for the 20 emotion categories, with example frames shown above. Conceptually related images from the public domain (CC0)
are displayed instead of actual trailer content. A summary of the emotional content of the trailer is shown on the right, which is computed by averaging predictions
across all analyzed frames. (B) PLS parameter estimates indicate which emotions lead to predictions of different movie genres. Violin plots depict the bootstrap dis-
tributions (1000 iterations) for parameter estimates differentiating each genre from all others. Error bars indicate bootstrap SE. (C) Receiver operator characteristic (ROC)
plots depict 10-fold cross-validation performance for classification. The solid black line indicates chance performance. (D) t-SNE plot based on the average activation of
all 20 emotions. (E) Confusion matrix depicting misclassification of different genres; rows indicate the ground truth label, and columns indicate predictions. The grayscale color
bar shows the proportion of trailers assigned to each class. Analysis was performed on a trailer for The Proposal, ©2009 Disney.
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is incompatible with a range of other emotions (sadness, anger, inter-
est, sexual desire, disgust, etc.).

Decoding model representations of emotions from patterns
of human brain activity
If emotion schemas are afforded by visual scenes, then it should be pos-
sible to decode emotion category–related representations in EmoNet
from activity in the human visual system. To test this hypothesis, we
measured brain activity using fMRI while participants (n = 18) viewed
a series of 112 affective images that varied in affective content (see
Materials and Methods for details). Treating EmoNet as a model of
the brain (38), we used PLS to regress patterns in EmoNet’s emotion
category layer onto patterns of fMRI responses to the same images.
We investigated the predictive performance, discriminability, and spa-
tial localization of these mappings to shed light on how and where
emotion-related visual scenes are encoded in the brain.

Because EmoNet was trained on visual images, we first explored
how emotion schemasmight emerge fromactivity in the human visual
system, within a mask comprising the entire occipital lobe [7214 voxels
(39)]. Patterns of occipital activity predicted variation in EmoNet’s
emotion category units across images, with different fMRI patterns
associated with different emotion categories (Fig. 4; for individual
maps, see fig. S4). Multiple correlations between brain-based predic-
tions and activation in EmoNet emotion category units were tested
in out-of-sample individuals using leave-one-subject-out (40) cross-
validation. These correlations were positive and significant for each
of the 20 EmoNet emotion categories [mean r = 0.2819 ± 0.0163 (SE)
across individuals; mean effect size d = 3.00; 76.93% of the noise ceil-
ing; P < 0.0001, permutation test; see Materials and Methods]. The
highest average level of performance included entrancement [r =
0.4537 ± 0.0300 (SE); d = 3.559; 77.03% of the noise ceiling; P <
0.0001], sexual desire [r = 0.4508 ± 0.0308 (SE); d = 3.453; 79.01% of
the noise ceiling; P < 0.0001], and romance [r = 0.3861 ± 0.0203 (SE);
d = 4.476; 72.34% of the noise ceiling; P < 0.0001], whereas horror [r =
0.1890 ± 0.0127 (SE); d = 3.520; 60.17% of the noise ceiling; P <
0.0001], fear [r = 0.1800 ± 0.0216 (SE); d = 1.963; 59.44% of the noise
ceiling; P < 0.0001], and “excitement” [r = 0.1637 ± 0.0128 (SE); d =
3.004; 65.28% of the noise ceiling; P < 0.0001] exhibited the lowest
levels of performance.

To further test the number of discriminable emotion categories
encoded in visual cortex, we constructed a confusion matrix for re-
lationships between the visual cortical multivariate pattern responses
and EmoNet emotion category units. For each study participant, we
correlated the output from each of the 20 fMRImodels (a vector with
112 values, one for each IAPS image) with vectors of activation across
EmoNet’s 20 emotion category units (producing a 20 × 20 correlation
matrix), using leave-one-subject-out cross-validation to provide an
unbiased test. For each model, the EmoNet unit with the highest cor-
relation was taken as the best-guess emotion category based on brain
activity, and the resulting confusion matrix was averaged across par-
ticipants. The confusion matrix is shown in Fig. 4C, with correct pre-
dictions in 20-way classification (sensitivity) shown on the diagonal
and false alarms (1 – specificity) on the off-diagonal. The average
sensitivity across participants was 66.67 ± 11.4% (SEM), and specific-
ity was 97.37 ± 0.88%; thus, visual cortical activity was mapped onto
EmoNet’s categories with a positive predictive value of 65.45 ± 10.4%
(chance is approximately 5%). In addition, as above, we estimated
the number of uniquely discriminable categories by clustering the
20 categories and searching the clustering dendrogram to determine
Kragel et al., Sci. Adv. 2019;5 : eaaw4358 24 July 2019
the maximum number of clusters (minimum link distance) at which
each cluster was significantly discriminable from each other one, with
bootstrap resampling to estimate confidence intervals. The results
showed at least 15 discriminable categories (95% CI, 15 to 17), with
a pattern of confusions thatwas sometimes intuitive based on psychol-
ogy (e.g., “empathic pain”was indistinguishable from excitement, and
romancewas groupedwith adoration and interest with entrancement)
but, in other cases, was counterintuitive (sadness grouped with awe).
This underscores that visual cortex does not perfectly reproduce hu-
man emotional experience but, nonetheless, contains a rich, multi-
dimensional representation of high-level, emotion-related features,
in support of prediction 2.

In additional model comparisons, we tested whether occipital cor-
tex was necessary and sufficient for accurate prediction of EmoNet’s
emotion category representation. We compared models trained using
brain activity from individual areas [i.e., V1 to V4 (43) and inferotem-
poral cortex (44)], the entire occipital lobe (39), and the whole brain.
We trained models to predict variation across images in each EmoNet
emotion category unit and averaged performance across emotion
categories. The whole–occipital lobe model [r = 0.2819 ± 0.0163 (SE)]
and the whole-brain model [r = 0.2664 ± 0.0150 (SE)] predicted
EmoNet emotion categories more strongly than models based on in-
dividual visual areas (r= 0.0703 to 0.1635; allP < 0.0001). The occipital
lobe model showed marginally better performance than the whole-
brainmodel (Dr = 0.0155; 95%CI, 0.0008 to 0.0303; P = 0.0404, paired
t test), despite having nearly 100,000 fewer features available for pre-
diction (formodel comparisons across regions, see fig. S5). A post hoc,
confirmatory test revealed that excluding occipital lobe activation
from the whole-brain model significantly reduced performance (Dr =
−0.0240; 95% CI, −0.0328 to −0.0152; P < 0.0001, paired t test), indi-
cating that activity in the occipital lobe meaningfully contributed to
predictions in the whole-brain model. Furthermore, using occipital
lobe activation to decode EmoNet emotion categories (activation in
layer fc8) was more accurate than decoding earlier layers (conv1 to
conv5, fc6, and fc7; see fig. S6). These results provide strong sup-
port for distributed representation of visual emotion schemas within
the occipital lobe and partially redundant coding of this information
in other brain systems. Although multiple brain systems convey
emotion-related information (potentially related to action tendencies,
somatovisceral responses, modulation of cognitive processes, and sub-
jective feelings), activity outside the visual system does not appear to
uniquely reflect the representations learned by EmoNet and may be
better aligned with nonvisual aspects of emotion. More generally,
the distributed coding of emotion categories parallels other recent
findings on population coding of related affective processes (15–16);
for review, see (45).

Classifying patterns of visual cortex activity into multiple
distinct emotion categories
To provide additional evidence that visual cortical representations
are emotion category–specific, we tested whether visual cortical ac-
tivity was sufficient to decode the category of emotional videos in an
independent dataset [n = 32; see (15)]. In this dataset, human indi-
viduals viewed cinematic film clips that elicited contentment, sadness,
amusement, surprise, fear, and anger. We selected videos that elicited
responses in one emotion category above all others for each video,
complementing the previous study,whose stimuli elicitedmore blended
emotional responses. We tested predictive accuracy in seven-way
classification of emotion category based on subject-average patterns
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Fig. 4. Visualization of the 20 occipital lobe models, trained to predict EmoNet categories from brain responses to emotional images. Visualization based on
PCA reveals three important emotion-related features of the visual system. (A) Scatterplots depict the location of 20 emotion categories in PCA space, with colors
indicating loadings onto the first three principal components (PCs) identified from 7214 voxels that retain approximately 95% of the spatial variance across categories.
The color of each point is based on the component scores for each emotion (in an additive red-green-blue color space; PC1 = red, PC2 = green, PC3 = blue). Error bars
reflect bootstrap SE. (B) Visualization of group average coefficients that show mappings between voxels and principal components. Colors are from the same space as
depicted in (A). Solid black lines indicate boundaries of cortical regions based on a multimodal parcellation of the cortex (41). Surface mapping and rendering were
performed using the CAT12 toolbox (42). (C) Normalized confusion matrix shows the proportion of data that are classified into 20 emotion categories. Rows correspond
to the correct category of cross-validated data, and columns correspond to predicted categories. Gray colormap indicates the proportion of predictions in the dataset,
where each row sums to a value of 1. Correct predictions fall on the diagonal of the matrix; erroneous predictions comprise off-diagonal elements. Data-driven
clustering of errors shows 15 groupings of emotions that are all distinguishable from one another. (D) Visualization of distances between emotion groupings. Dashed
line indicates minimum cutoff that produces 15 discriminable categories. Dendrogram was produced using Ward’s linkage on distances based on the number of
confusions displayed in (C). See Supplementary Text for a description and validation of the method.
Kragel et al., Sci. Adv. 2019;5 : eaaw4358 24 July 2019 8 of 15
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of occipital lobe activity for each condition, with eight-fold cross-
validation across participants to test prediction performance in out-
of-sample individuals. We then performed discriminable cluster
identification (Figs. 1 and 4; see Supplementary Text for details) to
estimate how many distinct emotion categories out of this set are
represented in visual cortex.

This analysis revealed that of the seven states being classified
(six emotions and neutral videos), at least five distinct emotion clusters
(95%CI, 5 to 7) could be reliably discriminated from one another based
on occipital lobe activity (five-way classification accuracy, 40.54%;
chance, 20%; see Fig. 5), supporting prediction 3. Full seven-way clas-
sification was 29.95% (chance, 14.3%; P = 0.002). Contentment, amuse-
ment, and neutral videos were reliably differentiated from all other
emotions. States of fear and surprise were not discriminable from one
another (they were confused 21.09% of the time), yet they were re-
liably differentiated from all other emotions. Sadness and anger were
Kragel et al., Sci. Adv. 2019;5 : eaaw4358 24 July 2019
also confusable (15.5%) but were discriminable from all other emo-
tional states. Thus, although some emotional states were similar to one
another regarding occipital lobe activation, we found strong evidence
for categorical coding of multiple emotions during movie inductions
of specific emotions.
DISCUSSION
Our work demonstrates the intimate relationship between visual per-
ception and emotion. Although emotions are often about specific
objects, events, or situations (1), few computational accounts of emo-
tion specify how sensory information is transformed into emotion-
relevant signals. Driven by the hypothesis that emotion schemas are
embedded in the human visual system, we developed a computational
model (EmoNet) to classify images into 20 different emotion categories.
Consistent with our prediction that image features alone are sufficient
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Fig. 5. Multiclass classification of occipital lobe activity reveals five discriminable emotion clusters. (A) Dendrogram illustrates hierarchical clustering of emotion
categories that maximizes discriminability. The x axis indicates the inner squared distance between emotion categories. The dashed line shows the optimal clustering
solution; cluster membership is indicated by color. (B) Confusion matrix for the five-cluster solution depicts the proportion of trials that are classified as belonging to
each cluster (shown by the column) as a function of ground truth membership in a cluster (indicated by the row). The overall five-way accuracy is 40.54%, where chance
is 20%. (C) Model weights indicate where increasing brain activity is associated with the prediction of each emotion category. Maps are thresholded at a voxel-wise
threshold of P < 0.05 for display.
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for predicting normative ratings of emotion categories determined by
humans, EmoNet accurately classified images into at least 11 different
emotion categories in holdout test data. Supporting our second pre-
diction that EmoNet representations learned from visual images
shouldmap primarily onto the activity of sensory systems (as opposed
to subcortical structures or limbic brain regions), distributed patterns
of human occipital lobe activity were the best predictors of emotion
category units in EmoNet. Last, our third prediction was supported by
the observation that patterns of occipital lobe activity were sufficient
for decoding at least 15 emotion categories evoked by images and at
least five of seven emotional states elicited by cinematic movies. These
findings shed light both on how visual processing constrains emotional
responses and on how emotions are represented in the brain.

A large body of research has assumed that low-level visual infor-
mation ismainly irrelevant to emotional processing; it should be either
controlled for or explained away, although studies have shown that
neurons in early visual areas are sensitive to affective information such
as reward (12). Our model provides a means to disentangle the visual
properties of stimuli that are emotion relevant from those that are not
and isolate stimulus-related features [e.g., red color serving as an
indicator of higher energy content in fruit (46)] from more abstract
constructs (e.g., the broader concept of craving, which does not nec-
essarily require a visual representation). Along these lines, we found
some evidence that aspects of the visual field, including angle, eccen-
tricity, and field size, are modestly associated with different emotion
schema, convergingwith evidence that emotions can act to broaden or
focus visual perception (47). However, we found that simple visual
features (or linear combinations of them) are poor discriminators of
emotion categories, suggesting that EmoNet is using complex, non-
linear combinations of visual features to label images. This suggests
that distributed representations that include multiple different visual
features (varying in abstractness) code for different schemas. Thus,
although the information EmoNet uses is certainly visual in nature,
it is not reducible to a simple set of features easily labeled by humans.
On the basis of our findings, it seems unlikely that a complete account
of emotion will be devoid of sensory qualities that are naturally asso-
ciated with emotional outcomes or those that are reliably learned
through experience.

We found that human ratings of pleasantness and excitement
evoked by images can be accurately modeled as a combination of
emotion-specific features (e.g., a mixture of features related to disgust,
horror, sadness, and fear is highly predictive of unpleasant arousing
experiences). Individualsmay draw from this visual informationwhen
asked to rate images. The presence of emotion-specific visual features
could activate learned associations with more general feelings of va-
lence and arousal and help guide self-report. It is possible that feelings
of valence and arousal arise from integration across feature detectors
or predictive coding about the causes of interoceptive events (48).
Rather than being irreducible (49), these feelings may be constructed
from emotionally relevant sensory information, such as the emotion-
specific features we have identified here, and previous expectations of
their affective significance. This observation raises the possibility that
core dimensions of affective experience, such as arousal and valence,
may emerge from a combination of category-specific features rather
than the other way around, as is often assumed in constructivist models
of emotion.

In addition to our observation that emotion-specific visual features
can predict normative ratings of valence and arousal, we found that
they were effective at classifying the genre of cinematic movie trailers.
Kragel et al., Sci. Adv. 2019;5 : eaaw4358 24 July 2019
Moreover, the emotions that informed prediction were generally
consistentwith those typically associatedwith each genre (e.g., romantic
comedies were predicted by activation of romance and amusement).
This validation differed from our other two image-based assessments
of EmoNet (i.e., testing on holdout videos from the database used for
training and testing on IAPS images) because it examined stimuli that
are not conventionally used in the laboratory but are robust elicitors of
emotional experience in daily life. Beyond hinting at real-world applica-
tions of our model, integrating results across these three validation tests
serves to triangulate our findings, as different methods (with different
assumptions and biases) were used to produce more robust, reproduci-
ble results.

The fact that emotion category units of EmoNet were best charac-
terized by activity spanning visual cortex (i.e., the occipital lobe) sheds
light on the nature of emotion representation in the brain. There are
multiple types of well-known functional specialization in the occipital
lobe, with different areas selectively responding to varying spatial
frequency, orientation, color, and motion, among numerous other
examples (50). More recent work combining CNNmodels and brain
measurement (30) has demonstrated that early visual areas represent
features in early layers of AlexNet in an explicit manner, whereby
information is directly accessible to a downstream neuron or pro-
cessing unit via linear readout (51).

Although an extensive body of work has demonstrated that these
mappings between visual features and the occipital lobe exist, our find-
ings indicate that neither early layers of AlexNet nor individual visual
features successfully discriminate amongmultiple emotion categories.
These observations suggest that an alternative account is necessary to
explain how emotion schemas aremapped onto the visual system.Our
work provides new insight into the visual system and the nature of
emotion by showing that the occipital cortex explicitly encodes rep-
resentations of multiple emotion schema and that rather than being
encoded in individual visual areas, emotion-related features are dis-
tributed across them. This distributed representation encodes com-
plex emotion-related features that are not reducible to individual
visual features. These features likely emerge through a series of non-
linear transformations, through which the visual system filters retinal
input to represent different types of emotional situations, analogous to
how object representations emerge in the ventral stream.

Activation of emotion schemas in visual cortex offers a rapid, pos-
sibly automatic way of triggering downstream emotional responses in
the absence of deliberative or top-down conceptual processes. By har-
nessing the parallel and distributed architecture of the visual system,
these representations could be refined through experience. Informa-
tion from downstream systems via feedback projections from ventro-
medial prefrontal cortex or the amygdala (10) could update visual
emotion schemas through learning. Sensory information from non-
retinal sources, including auditory stimuli and mental imagery, can
activate object-specific representations in early visual areas (52) and
could similarly activate emotion-specific codes in the visual system.
Thus, emotion-related activity in visual cortex is most likely not a
purely bottom-up response to visual inputs or a top-down interpreta-
tion of them but is at the interface of sensory representations of the
environment and previous knowledge about potential outcomes. Fu-
ture work integrating computational models with recurrent feedback
and brain responses to emotional images will be necessary to under-
stand the convergence of these bottom-up and top-down signals. Our
computational framework provides a way to resolve outstanding the-
oretical debates in affective science. It could be used, for example, to
10 of 15
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test whether mappings between visual features and emotions are
conserved across species or change throughout development in
humans. On the basis of evolutionary accounts that suggest that cer-
tain basic emotions are solutions to survival challenges, mechanisms
for detecting emotionally relevant events should be conserved across
species. Notably, some of the most accurately predicted schemas in-
clude sexual desire and craving, which are motivational states that
transcend cultures and are linked to clear evolutionary goals (i.e., to
reproduce and to acquire certain nutrients). Work in the domain of
object recognition has shown that representations of objects are highly
similar between humans and macaques (53); an extension of the
present work is to test whether the emotion representations we
identified here are as well.

Our work has several limitations that can be addressed in future
work. Although our goal was to focus on visual processing of emotional
features, visual stimulation is not the only way in which emotions can
be elicited. Information fromother senses (olfactory, auditory, somatic,
interoceptive, etc.), memories of past events, manipulation of motor
activation, and mental imagery have all been used to evoke emotional
experiences in the laboratory. EmoNet can be expanded, potentially by
adding more abstract or supramodal representation of emotions and
interactions among different types of sensory information. Further, al-
though EmoNet was trained to evaluate the emotional significance of
images, it was not developed to predict emotional behavior. Future
work is necessary to understand whether emotion schemas constrain
behavior and to determine whether they generalize to real-world sce-
narios [e.g., whether viewing an image of a spider activates the same
schema as physically encountering one (54)]. It may also be possible to
refine the model by constructing adversarial examples (55) of different
schemas, i.e., images that are designed to fool EmoNet, and to evaluate
their impact on human experience and behavior. Last, as our model
comparisons show, EmoNet is only one model in a large space of neu-
ral networks that can explain emotion processing; comparing different
models designed to achieve a common goal (e.g., detecting emotional
situations fromwords, speech, or music or producing a specific behav-
ioral response) may reveal the principles at the core of different emo-
tional phenomena.

Using a combination of computational and neuroscientific tools, we
have demonstrated that emotion schemas are embedded in the human
visual system. By precisely specifying what makes images emotional,
our modeling framework offers a new approach to understanding
how visual inputs can rapidly evoke complex emotional responses.
We anticipate that developing biologically inspired computational
models will be a crucial next step for resolving debates about the nature
of emotions [e.g., (56)] and providing practical tools for scientific re-
search and in applied settings.
MATERIALS AND METHODS
Computational model development
We used a large database of emotional video clips (25) for developing
EmoNet. This database includes 2185 videos that are well characterized
by 27 distinct emotion categories. A total of 137,482 frames were
extracted from the videos and divided into training and testing samples
using a 90-10 split. Emotion categories that had fewer than 1000 frames
for training were excluded from the model, reducing the emotions in-
cluded in the model to adoration, aesthetic appreciation, amusement,
anxiety, awe, boredom, confusion, craving, disgust, empathic pain, en-
trancement, excitement, fear, horror, interest, joy, romance, sadness,
Kragel et al., Sci. Adv. 2019;5 : eaaw4358 24 July 2019
sexual desire, and surprise. These categories were selected because
they were extensively validated as distinct by human raters and based
on the suitability of available stimuli for modeling; other emotion
categories are likely important (e.g., anger was excluded from the
set) and should be studied in future research. The pretrained CNN
model AlexNet (28) was downloaded for use in MATLAB. We fixed
all but the last fully connected layer of AlexNet, and we retrained the
model after replacing the 1000 target object categories with the 20 emo-
tion categories listed above. Training was performed using stochastic
gradient descent with momentum, an initial learning rate of 0.0001,
and a minibatch size of 16.

Computational model validation
Three separate tests were performed to assess model performance:
(i) validation on the holdout dataset, (ii) predicting normative ratings
of valence and arousal for the IAPS [a standardized set of affective
images used in psychological research (26)], and (iii) predicting the
genre of cinematic movie trailers. For the holdout dataset, we com-
puted standard signal detection metrics (i.e., AUC, sensitivity, and
specificity) and evaluated overall model performance and that for each
category. We performed inference onmodel performance by generat-
ing null distributions through random permutation of test set labels.
In addition, EmoNet’s performance was compared to that of AlexNet
to determine how much retraining the last fully connected layer im-
proved performance. For this purpose, we randomly sampled AlexNet
predictions for 20 object categories to compute relevant signal detec-
tion metrics 10,000 times in addition to finding the 20 unique object
categories that best predicted the 20 emotions.

To verify the emergence of emotion-related information in EmoNet,
we estimated the extent to which activation in each layer of EmoNet
could be used to discriminate among the 20 target emotion categories.
This was accomplished via PLS regression, with activation of units in
each layer used as inputs to regression models and the 20 emotion
categories as outputs. Separate regression models were estimated
using training data for each layer, and the holdout images were used
for model evaluation.

We additionally performed a series of model comparisons to evalu-
ate which properties of EmoNet contributed to its performance in the
holdout dataset. Modified versions of EmoNet were created by either
shortening AlexNet before transfer learning. This was accomplished
by reducing the number of convolutional layers or by removing fully
connected layers. In addition, EmoNet was compared to a more com-
plex model that included the fully trained AlexNet model but added an
additional fully connected layer (with one unit per emotion category)
instead of only retraining the last layer. Differences in the perform-
ance of models were evaluated using Friedman’s analysis of variance
(ANOVA), and pairwise comparisons against EmoNet were made
using McNemar tests via MATLAB’s testcholdout function.

Given evidence of above-chance performance, we conducted a se-
ries of post hoc tests to evaluate the relationship between different vi-
sual features and the representations learned by EmoNet. To this end,
we computed the red, green, and blue color histograms; estimated the
2D power spectral density; computed the number of faces using the
Viola-Jones algorithm; and applied AlexNet to identify the objects
in each image. To qualitatively describe associations between these
features and model output in the training sample, a series of correla-
tions were performed. Each of these feature sets provided a number
of predictors (ranging from 1 to ~150,000) that were used to classify
images into 20 emotion categories using PLS discriminant analysis.
11 of 15
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We assessed the generalizability of EmoNet on IAPS images using
activations in the last fully connected layer to predict normative ratings
of valence and arousal. This analysis was performed using PLS regres-
sion (with bootstrap procedures to estimate the variance of parameter
estimates) and 10 iterations of 10-fold cross-validation to determine
the correlation betweenmodel predictions and “ground truth” norma-
tive ratings. We averaged normative ratings and EmoNet predictions
for each of 25 quantiles. The construct validity of model parameters
(e.g., whether greater activations of amusement, as opposed to fear,
were associated with higher valence norms) and cross-validated esti-
mates of RMSE served as outcomes of interest.

In the final validation test, we used activations in the last fully
connected layer to classify the genre ofmovie trailers (n= 28, sampling
from romantic comedy, horror, and action movies; see the Supple-
mentary Materials). Trailers were selected on the basis of genres listed
on www.imdb.com/feature/genre and their availability at www.hd-
trailers.net. Classification into different genres was performed using
PLS regression (with bootstrap procedures to estimate the variance
of parameter estimates) and 10-fold cross-validation to estimate
the accuracy of classification into different genres. The construct va-
lidity of model parameters (e.g., whether greater activations of
amusement predicted romantic comedies) and cross-validated es-
timates of classification accuracy served as outcomes of interest.

fMRI experiment I: Modeling brain responses to
emotional images
Participants
We recruited 18 healthy, right-handed individuals (10 females,
Mage = 25) from the Boulder area. As there were, to our knowledge,
no previous studies relating activation in convolutional neural nets
to human fMRI responses to emotional images, this sample size was
not determined a priori. The experimental design focused on max-
imizing task-related signal within participants by showing them
112 affective images. Confirmatory post hoc analysis of effect size
and the variance of parameter estimates corroborated that this sam-
ple size was sufficient for reliably detecting effects and minimizing
the variance of parameter estimates (e.g., predicting EmoNet out-
comes from occipital lobe activity using a random sample of only
nine participants produced an average effect size of d = 3.08 and
95% CI of 2.08 to 4.36; see fig. S7). Participants did not meet the Di-
agnostic and Statistical Manual of Mental Disorders (DSM V) crite-
ria for any psychological disorder and were screened to ensure safety
in the MR environment. All participants provided informed consent
before the experiment in accordance with the University of Colorado
Boulder Institutional Review Board.
Experimental paradigm
In this experiment, brain activitywasmeasured using fMRI, while par-
ticipants viewed a series of emotional images. Stimuli were selected
from the IAPS and the Geneva Affective PicturE Database (GAPED)
using published normative arousal ratings to have either positive or
negative valence and high arousal (26, 33, 57, 58). A total of 112 images
were used for this experiment.

Image presentation lasted 4 s, with a jittered intertrial interval of
3 to 8 s [average internal interval (ITI), 4 s]. The scanning session
was divided into two runs lasting 7.5 min, where the images were
presented in a randomized order. Stimulus presentation was
controlled using code written in MATLAB using the Psychophysics
toolbox. Eye position was assessed during scanning using an EyeLink
1000 system (SR Research, Ottawa, Ontario, Canada) with a
Kragel et al., Sci. Adv. 2019;5 : eaaw4358 24 July 2019
sampling rate of 1 kHz. Bivariate associations between the variance
of eye position (i.e., the SD of lateral and vertical position) and EmoNet
predictions were computed to confirm that eye movements were not
highly correlated with model output.
MRI data acquisition
Gradient-echo echo-planar imaging (EPI) blood-oxygen-level-
dependent (BOLD)–fMRI was performed on a 3-T Siemens MRI
scanner (Siemens Healthcare). Functional images were acquired using
multiband EPI sequence: echo time (TE), 30 ms; repetition time (TR),
765 ms; flip angle, 44°; number of slices, 80; slice orientation, coronal;
phase encoding = h > f ; voxel size, 1.6 mm × 1.6 mm × 2.0 mm; gap
between slices, 0 mm; field of view, 191 mm × 191 mm; multiband
acceleration factor, 8; echo spacing, 0.72 ms; bandwidth, 1724 Hz
per pixel; partial Fourier in the phase encode direction, 7/8.

Structural images were acquired using a single-shot T1MPRAGE
sequence: TE, 2.01 ms; TR, 2.4 s; flip angle, 8°; number of slices, 224;
slice orientation, sagittal; voxel size, 0.8 mm isotropic; gap between
slices, 0 mm; field of view, 256 mm × 256 mm; GeneRalized Auto-
calibrating Partial Parallel Acquisition (GRAPPA) acceleration factor, 2;
echo spacing, 7.4 ms; bandwidth, 240 Hz per pixel.
MRI preprocessing
Multiband brain imaging data were preprocessed following proce-
dures used in the Human Connectome Project (59). This approach
includes distortion correction, spatial realignment based on transla-
tion (in the transverse, sagittal, and coronal planes) and rotation (roll,
pitch, and yaw), spatial normalization toMNI152 space using T1 data,
and smoothing using a 6-mm full width at half maximum (FWHM)
Gaussian kernel.
MRI analysis
Preprocessed fMRI data were analyzed using general linear models
(GLMs)with Statistical ParametricMapping (SPM8) software (Wellcome
Trust Centre for Neuroimaging, UK). Separate models were estimated
for each participant that included the following: (i) a regressor for every
image presented to participants, modeled as a 4-s boxcar convolved
with the canonical hemodynamic response function (HRF) of SPM;
(ii) 24 motion covariates from spatial realignment (i.e., translation
in x, y, and z dimensions; roll, pitch, and yaw; and their first- and
second-order temporal derivatives); (iii) nuisance regressors specifying
outlier time points, or “spikes,” that had large deviations in whole-brain
BOLD signal; and (iv) constant terms to model the mean of each im-
aging session.

To identify mappings between patterns of brain activity and
features of EmoNet, PLS regression models were fit on data from
the entire sample (n = 18) using the full set of single-trial parameter
estimates (112 trials for each participant) as input and activation in
the last fully connected layer of EmoNet as the output (20 different
variables, one per emotion category). We also conducted additional
analyses using the same approach to predict high-dimensional
patterns of activation from earlier layers of EmoNet (layers conv1
to conv5, fc6, and fc7). Model generalization (indicated by the cor-
relation between observed and predicted outcomes and mean
squared error) was estimated using leave-one-subject-out cross-val-
idation. Inference on model performance was performed using per-
mutation testing, where model features (i.e., activation in layer fc8)
were randomly shuffled on each of 10,000 iterations. Performance
relative to the noise ceiling was estimated by computing the ratio
of cross-validated estimates to those using resubstitution (which
should yield perfect performance in a noiseless setting; see Supple-
mentary Text).
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Inference on parameter estimates from PLS was performed via
bootstrap resampling with 1000 replicates, using the means and SE
of the bootstrap distribution to compute P values based on a normal
distribution. Bootstrap distributions were visually inspected to verify
that they were approximately normal. Thresholding of maps was
performed using false discovery rate (FDR) correction with a thresh-
old of q < 0.05. To visualize all 20models in a low-dimensional space,
principal component decomposition was performed on PLS regres-
sion coefficients on every bootstrap iteration to produce a set of
orthogonal components and associated coefficients comprising a
unique pattern of occipital lobe voxels. Procedures for inference and
thresholding were identical to those used for parameter estimates, if
only theywere applied to coefficients from the PCA. Brainmaps in the
main figures are unthresholded for display. All results reported in the
main text (and supplementary figures) survive FDR correction for
multiple comparisons.

fMRI experiment II: Classifying brain responses to
emotional film clips
fMRI data used for validating the model have been published pre-
viously; here, we briefly summarized the procedure. Full details can
be found in the study of Kragel and LaBar (15).
Participants
Weused the full sample (n= 32) from an archival dataset characterizing
brain responses to emotional films and music clips. For this analysis,
which focuses on visual processing, we used only brain responses to film
stimuli (available at www.neurovault.org). These data comprise single-
trial estimates of brain activity for stimuli used to evoke experiences that
were rated as being emotionally neutral in addition to states of content-
ment, amusement, surprise, fear, anger, and sadness.
Experimental paradigm
Participants completed an emotion induction task where they were
presented with an emotional stimulus and subsequently provided on-
line self-reports of emotional experience. Each trial started with
the presentation of either a film ormusic clip (mean duration, 2.2 min),
immediately followed by a 23-item affect self-report scale lasting
1.9 min, followed by a 1.5-min washout clip to minimize carryover
effects.
MRI data acquisition
Scanning was performed on a 3-T General Electric MR 750 system
with gradients of 50 mT/m and an eight-channel head coil for parallel
imaging (General Electric, Waukesha, WI, USA). High-resolution
images were acquired using a 3D fast SPGR BRAVO pulse sequence:
TR, 7.58 ms; TE, 2.936 ms; image matrix, 2562; a = 12°; voxel size,
1 mm× 1mm× 1mm; 206 contiguous slices. These structural images
were aligned in the near-axial plane defined by the anterior and pos-
terior commissures. Whole-brain functional images were acquired
using a spiral-in pulse sequence with sensitivity encoding along the
axial plane (TR, 2000 ms; TE, 30 ms; image matrix, 64 × 128; a
= 70°; voxel size, 3.8 mm × 3.8 mm × 3.8 mm; 34 contiguous
slices).
MRI preprocessing
fMRI data were preprocessed using SPM8 (www.fil.ion.ucl.ac.uk/spm).
Images were first realigned to the first image of the series using a six-
parameter, rigid-body transformation. The realigned images were then
coregistered to each participant’s T1-weighted structural image and
normalized to MNI152 space using high-dimensional warping imple-
mented in the VBM8 toolbox. No additional smoothing was applied
to the normalized images.
Kragel et al., Sci. Adv. 2019;5 : eaaw4358 24 July 2019
MRI analysis
A univariate GLM was used to create images for the prediction
analysis. The model included separate boxcar regressors indicat-
ing the onset times for each stimulus, which allowed us to isolate
responses to each emotion category. Separate regressors for the
rating periods were included in the model but were not of interest.
All regressors were convolved with the canonical HRF used in SPM
and an additional six covariate regressors modeled for movement
effects.

Pattern classification of occipital lobe responses to the film clips
was performed using PLS discriminant analysis [following methods
in (15)]. The data comprised 444 trials total (2 videos × 7 emotion
categories × 32 participants, with four trials excluded because of
technical issues during scanning). Measures of classification per-
formance were estimated using eight-fold participant-independent
cross-validation, where participants were randomly divided into eight
groups; classification models were iteratively trained on data from
all but one group, and model performance was assessed on data
from the holdout group. This procedure was repeated until all
data had been used for training and testing (eight-fold totals). Infer-
ence on model performance was made using permutation tests,
where the above cross-validation procedure was repeated 1000 times
with randomly permuted class labels to produce a null distribution
for inference. The number of emotion categories that could be accu-
rately discriminated from one another was estimated using discrim-
inable cluster identification (see Supplementary Text for details).
Inference on model weights (i.e., PLS parameter estimates) at each
voxel was made via bootstrap resampling with a normal approxi-
mated interval.

Definition of regions of interest
A region-of-interest (ROI) approach was used to restrict features for
model development and to localize where information about emo-
tions is encoded.We selected several anatomically defined ROIs based
on our focus on the visual system. These regions include multiple
cytoarchitecturally defined visual areas [i.e., V1, V2, V3v, V3d, V3a,
and V4 (43)], the entire occipital lobe (39), and inferotemporal cortex
(44). These masks were created using the SPM Anatomy toolbox (60)
and the Automated Anatomical Labeling atlas (44).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/7/eaaw4358/DC1
Supplementary Text
Fig. S1. Comparison of different CNN architectures.
Fig. S2. Visual features associated with different emotion schemas.
Fig. S3. Dimensionality of CNN predictions in the holdout dataset estimated with PCA and
clustering of classification errors in 20-way classification.
Fig. S4. Surface renders depict where decreases (blue) or increases (red) in fMRI activation are
predictive of activation in emotion category units of EmoNet.
Fig. S5. Information about emotion schema is distributed across human visual cortex.
Fig. S6. Decoding EmoNet activation using fMRI responses from different visual areas and a
model comprising the entire occipital lobe.
Fig. S7. Results of simulations using repeated random subsampling to assess sample size and
power for fMRI experiment I.
Fig. S8. Classification of images containing dogs from ImageNet (68).
Fig. S9. Simulated experiments used to evaluate the bias of the discriminable cluster
identification method.
Movie S1. Model predictions for action trailers.
Movie S2. Model predictions for horror trailers.
Movie S3. Model predictions for romantic comedy trailers.
References (61–68)
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