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wji and the bias vector bj specific to that neuron as (wjixi + bj), where 
the rectified linear activation function is given by (y) ≡ max (y,0). 
The sum of the neural outputs is normalized via a softmax layer.

We train the ANN using 10,000 sets of simulated RUS data for 
the case of a one-component OP, with varied elastic constants, sample 
geometries, jump magnitudes, and missing resonances, and another 
10,000 sets for the case of a two-component OP. We use cross-
entropy as the cost function for stochastic gradient descent. We 
train 10 different neural networks in this way to an accuracy of 
∼90% and then fix each individual network’s weights and biases. 
Once the networks are trained, we ask each ANN for its judgment 
on the OP dimensionality associated with an experimentally deter-
mined set of 29 jumps and average the responses from each neural 
network. The sizes of the jumps depend on how THO is assigned—
assigning THO artificially far from the actual phase transition will 
produce large jumps in all resonances. We therefore repeat our 
ANN determination using a range of THO around the phase transi-
tion and plot the outcome as a function of THO.

Figure 4A shows the results of our ANN analysis for sample S1—
the same sample discussed above using the traditional analysis. To 
visually compare the training and experimental data in a transpar-
ent fashion, we plot the list of sorted and normalized jumps against 
their indices in the list. The average of the one-component training 
data is shown in red; the average of the two-component training 
data is shown in blue; the experimental jumps are shown in gray. 

It is clear that the experimental data resemble the one-component 
training data much more closely. This resemblance is quantified in the 
inset, showing the ANN confidence that the experimental data belong 
to the one-component class for varying assignments of THO. We find 
that the confidence of a one-component OP is maximized in the region 
of assigned THO that corresponds to the experimental value of THO.

Thus far, we have shown that both methods—the traditional 
method of extracting the elastic moduli using the elastic wave equation 
and our new method of examining the resonance spectrum directly 
using a trained ANN—agree that the HO parameter of URu2Si2 is one 
component. We can now use the neural network to analyze a smaller, 
irregular-shaped but higher-quality [higher THO (43)] sample that 
cannot be analyzed using the traditional method due to its complicated 
geometry. Figure 4B shows the result of the ANN analysis performed 
on a resonance spectrum of sample S2. The sorted and normalized 
spectrum looks very similar to that of sample S1, and the averaged ANN 
outcome gives 90% confidence that the OP is one component. Despite 
the fact that sample S2 has a geometry such that the elastic moduli 
cannot be extracted, its resonance spectrum still contains information 
about the OP dimensionality, and our ANN identifies this successfully.

DISCUSSION
Our two analyses of ultrasonic resonances across THO in URu2Si2 
strongly support one-component OPs, such as electric-hexadecapolar 

Fig. 2. Traditional extraction of symmetry information from elastic moduli. (A) The tetragonal crystal structure of URu2Si2 and its five irreducible representations of 
strain, along with the associated moduli. Each resonance shown in Fig. 1A can be decomposed into this basis set of strains, modulated in phase at long wavelengths 
throughout the crystal. c23 characterizes the direct coupling between the two A1g strains. (B) Compressional (A1g shown in orange) and (C) shear (B1g, B2g, and Eg shown in 
blue) elastic moduli, with dashed guides to the eye showing the temperature dependence extrapolated from below and above THO. The absolute values (in gigapascals) 
of the moduli at ∼20 K were determined to be (c11 + c12)/2 = 218.0, c33 = 307.4, c23 = 112.8, (c11 − c12)/2 = 65.2, c66 = 140.6, and c44 = 101.8. (D) The magnitude of the jumps 
at THO with their experimental uncertainties. A large jump occurs in (c11 + c12)/2 at THO, along with a small jump in c23. The shear moduli, on the other hand, show only a 
change in slope at THO—this constrains the OP of the HO state to transform as a one-component representation.
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Fig. 3. Schematic of the algorithm used to generate the training data. Values for elastic moduli and dimensions are chosen randomly from a range that bounds 
our experimental uncertainties. One-component OPs give jumps only in A1g moduli, whereas two-component OPs also give jumps in B1g and B2g moduli. Separate 
output files are generated corresponding to one-component and two-component OPs, each containing n jumps, where n is the number of frequencies whose 
temperature evolution could be experimentally measured. We use scaled RUS frequency shifts fj/fj as input to the ANN. The neurons in the hidden layer have 
weights wij and biases bi. Each output neuron corresponds to one of the two OP dimensionalities under consideration, i.e., one-component and two-component. 
The output value of each neuron is the network’s judgment on the likelihood of that OP dimensionality.

A B

Fig. 4. Results of the ANN analysis for two samples of URu2Si2. Upper blue curves show the averaged, sorted, simulated frequency shift (jump) data plotted 
against its index in the sorted list for a two-component OP for (A) sample S1 and (B) sample S2. The data are normalized to range from 0 to 1. Lower, red curves 
shows the same for a one-component OP. Gray dots show experimental data for critical temperature assignment (A) THO = 17.26 K and (B) THO = 17.505 K, which 
visually aligns more closely with the average one-component simulated data than the two-component simulations. Insets: Percentage confidence of the 
one-component output neuron for various assignments of THO averaged over 10 trained networks. A maximum confidence of (A) 83.2% occurs for THO = 17.26 K, 
and (B) 89.7% for THO = 17.505 K. Sample S2 has a higher value of THO due to its lower impurity concentration, as verified independently by the resistivity. Photo 
credit: Sayak Ghosh, Cornell University.
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order (14), the chiral density wave observed by Raman spectroscopy 
(17, 18, 45), and are consistent with the lack of C4 symmetry breaking 
observed in recent x-ray scattering experiments (30). Our analysis 
rules against two-component OPs, such as rank-5 superspin (19, 22) 
and spin nematic order (24). The power of our result lies in its inde-
pendence from the microscopic origin of the OP: Group theoretical 
arguments alone are sufficient to rule out large numbers of possible 
OPs. It could be argued that the coupling constants governing the 
jumps in the shear moduli are sufficiently small such that the jumps 
are below our experimental resolution. Previous experiments, however, 
have shown these coupling constants to be of the same order of 
magnitude in other materials with multicomponent OPs (35, 46, 47). 
It has also been demonstrated that the size of the jump in heat 
capacity at THO is largely insensitive to residual resistivity ratio (RRR) 
(43, 48, 49). It is therefore hard to imagine that higher RRR samples 
would yield jumps in the shear moduli.

The use of ANNs to analyze RUS data represents an exciting op-
portunity to reexamine ultrasound experiments that were previously 
unable to identify OP symmetry. For example, irregular sample geom-
etry prevented identification of the OP symmetry in the high-Tc 
superconductor YBa2Cu3O6.98 (34). Reanalysis of this spectrum using 
our ANN could reveal whether the OP of the pseudogap is associated 
with Eu-symmetry orbital loop currents. The proposed two-component 
px + ipy superconducting state of Sr2RuO4 and other potential spin-
triplet superconductors could also be identified in this fashion, where 
traditional pulse-echo ultrasound measurements have been con-
founded by systematic uncertainty (50).

Beyond RUS, there are many other data analysis problems in 
experimental physics that stand to be improved using an approach 
similar to the one presented here (51). In particular, any technique 
where simulation of a dataset is straightforward but where fitting is 
difficult should be amenable to a framework of the type used here. 
The most immediately obvious technique where our algorithm could 
be applied is nuclear magnetic resonance (NMR) spectroscopy. NMR 
produces spectra in a similar frequency range to RUS but which 
originate in the spin-resonances of nuclear magnetic moments. Modern 
broadband NMR can produce complex temperature-dependent spectra, 
containing resonances from multiple elements situated at different 
sites within the unit cell. Given a particular magnetic order, it is 
relatively straightforward to calculate the NMR spectrum—i.e., to 
produce training data. The inverse problem, however, is more challeng-
ing: recovering a temperature-dependent magnetic structure from an 
NMR dataset. In a way similar to RUS, missing resonances and resonances 
mistakenly attributed to different elements can render an analysis entirely 
invalid. It should be relatively straightforward to adapt our framework 
for generating training data and our ANN to extract temperature (or 
magnetic field)–dependent magnetic structures from NMR spectra.

MATERIALS AND METHODS
Sample S1 was grown by the Czochralski method. A single crystal 
oriented along the crystallographic axes was polished to dimensions 
3.0 mm by 2.8 mm by 2.6 mm, with 2.6 mm along the tetragonal 
long axis. Sample S2 was grown was grown by the Czochralski method 
and then processed by solid-state electrorefinement. Typical RRR 
values for ab-plane flakes of URu2Si2 taken from the larger piece 
range from 100 to 500. The RRR values measured on larger pieces 
(Fig. 4) are between 10 and 20. For a comparison of different growth 
methods for URu2Si2 see Gallagher et al. (49).

Resonant ultrasound experiments were performed in a custom-
built setup consisting of two compressional-mode lithium niobate 
transducers, which were vibrationally isolated from the rest of the 
apparatus. The top transducer was mounted on a freely pivoting arm, 
ensuring weak coupling and linear response. The response voltage 
generated on the pickup transducer—maximum whenever the drive 
frequency coincides with a sample resonance—was measured with 
lock-in technique. The response signal was preamplified using a 
custom-made charge amplifier to compensate for signal degradation 
in coaxial cables (52). Oxford Instruments He4 cryostat was used for 
providing temperature control.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/10/eaaz4074/DC1
Phase-locked loop
Training data for ANN
Symmetry and coupling
Lack of c33 jump
Resolving the origin of jumps
Compositions of resonances
Resistance measurement
Possible effects from parasitic antiferromagnetism
Table S1. Calculated discontinuities (“jumps”) in elastic moduli for one- and two-component 
OPs in a tetragonal system.
Fig. S1. Resonant ultrasound using phase-locked loop.
Fig. S2. Three representative resonance frequencies of URu2Si2 and their attenuation through THO.
Fig. S3. Elastic moduli of URu2Si2 with the contribution above THO subtracted.
Fig. S4. Fitting temperature evolution of resonances.
Fig. S5. Resistance of sample S2 measured from 300 K down to 2 K.
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