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and high-frequency noise, so the derivative is much cleaner as shown 
in Fig. 4B, according to the vergence motions. The dataset shows that 
blink velocity is faster than vergence motions, which corrupts thresh-
olding. A 500-point median filter can remove any presence of the 
blink, as shown in Fig. 4C. However, stronger blinking from certain 
subjects remains and is removed by thresholding an amplified de-
rivative signal. Increasing the second-order derivative filter to sixth 
order can assist in positively altering the range of thresholds by chang-
ing the SNR (Fig. 4D). The final step is to parse the data into a sliding 
window, compute features, and input them into the classifier. A decision 
boundary of two dimensions of the feature set with the ensemble clas-
sifier is shown in Fig. 4E. A wrapper feature selection algorithm was 
applied to determine whether the utilization of 10 features was opti-
mized for the recorded EOG signals. In addition to five features (defi-
nite integral, amplitude, velocity, signal mean, and wavelet energy) 
from our prior study (22), we studied other features that can be easily 
converted into C programming using a MATLAB coder (see details 
in Materials and Methods). The result of the wrapper feature selec-
tion indicates a saturation of the accuracy with a mean accuracy of 
95% (fig. S8B). Therefore, all 10 features were used in the classifica-
tion methods with a sliding window of 2 s. To achieve the highest 
accuracies for real time and cross-validation, the classification algo-
rithm requires the test subject to follow protocols evoking a response 
of eye vergence in two directions. The test subject followed a repeated 
procedure from motion to blink, motion, and blink. This procedure 

allows the data to be segmented into its specific class for facile training 
with the classifier by following directions 1 and 2 four times each 
(fig. S8C). The integration of the training procedure with filters, 
thresholds, and the ensemble classifier enables our high classification 
accuracies. Consequently, the presented set of high-quality EOG 
measurement, integrated algorithm, and training procedures allow 
the calibration of vergence classification specific for the user, regard-
less of the variabilities in EOG arising from individual differences, 
such as face size or shape. Multiple classifiers were tested in the 
MATLAB’s classification learner application; however, the results show 
k nearest neighbor, and support vector machine was inferior to en-
semble subspace discriminant, which showed accuracies above 85% 
for subject 12 (see details in fig. S8D and section S2).

Comparison of ocular classification accuracy between VR 
and physical apparatus
This work summarizes the experimental results of ocular classification 
comparison between the soft ocular wearable electronics with a VR 
headset (Fig. 1A) and a conventional device with a physical target 
apparatus (fig. S1A). We analyzed and compared only the center posi-
tion data among the circular targets (Fig. 1B) because this resembles 
the most accurate vergence motions without any noise from gaze mo-
tions. We transferred our physical apparatus to the virtual domain 
by converting flat display screen images to fit the human binocular 
vision. The VR headset enables us to capture ideal eye vergence motions 

Fig. 4. Optimization of vergence analysis via signal processing and feature extraction. (A) Raw eye vergence signals (top) acquired by the wireless ocular wearable 
electronics in real time and the corresponding derivative signals (bottom). a.u., arbitrary units. (B) Preprocessed data with a band-pass filter and the corresponding deriv-
ative, raised to the second power. (C) Further processed data with a 500-point median filter and the corresponding derivative, raised to the sixth power. A coefficient is 
multiplied to increase the amplitude of the second- and sixth-order differential filters. (D) SNR comparison between the second- and sixth-order differential filters, show-
ing an increased range of the sixth-order data. The sixth-order data are used for thresholding the vergence signals for real-time classification of the dataset. (E) Data from 
the sliding window are added into the ensemble subspace classifier (shown by the decision boundaries of two dimensions of the feature set).
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because head motions are disabled and the stimulus is perfectly aligned 
with the user’s binocular vision. This is evident from the averaged 
signal and SD of the normalized position of the ideal datasets shown 
in Fig. 5 (A and B) [red line, average; gray shadow, deviation with 
different gain values (12 for VR and 1 for physical system)]. The physical 
apparatus data show a larger variation in overall trials in comparison 
with the VR headset, as observed in fig. S9 (A and B). This is a con-
sequence of the test apparatus with each user’s variability in observa-
tion of the physical apparatus. We also compared the normalized peak 
velocities according to the normalized positions for both convergence 
and divergence in Fig. 5 (C and D) [additional datasets are summarized 
in fig. S9 (C and D)]. Using a rise time algorithm, the amplitude changes 
and variation of all datasets from physical and VR are shown in fig. 
S10 (A and B). The summarized comparison of classification accu-
racy based on cross-validation with the VR-equipped soft ocular wear-
able electronics shows a higher value (91%) than that with the physical 
apparatus (80%), as shown in Fig. 5 (E and F). The intrinsic quality 
of the ensemble classifier that we used shows high variance in cross- 
validation assessments. Even with the real-time classification, the en-
semble classifier yields about 83 and 80% for the VR environment 

and the physical apparatus, respectively. The VR real-time classification 
is higher than the physical apparatus because of less variation between 
opposing motions of positive and negative changes. Details of the 
classification accuracies in cross-validation and real time are sum-
marized in fig. S10 (C to F) and tables S2 to S5.

VR-enabled vergence therapeutic system
As the gold standard method, conventional home-based vergence ther-
apy uses pencil push-ups in conjunction with OBVT (2). Adding a VR 
headset to home-based therapy with a portable data recording sys-
tem can certainly make a patient use the same therapeutic program 
both at an optometrist’s office and at home. To integrate with the 
developed ocular wearable electronics, we designed two ocular therapy 
programs in a Unity engine (unity3d.com). The first program enables 
a patient to use the virtual “Brock String” (Fig. 6A), which is a string 
of 100 cm in length with three beads (see VR program in movie S2), 
originally designed to treat patients with strabismus (11). The string 
is offset 2 cm below the eye and centered between the eyes with the 
three beads at varying distances. Three channels of soft sensors on 
the face (Fig. 3F) measure EOG signals, corresponding to a subject’s 
eye movements targeting on three beads (Fig. 6A). An example of a 
VR-based training apparatus is shown in movie S3. The second therapy 
program uses a set of two cards with concentric circles on each card 
referred to as “Eccentric Circle” (Fig. 6B), which is also a widely used 
program in vergence therapy (11). The corresponding EOG signals 
show the user, wearing the VR headset, cross his eyes to yield the center 
card. The distance between the left and right cards can be increased to 
make this task more difficult. The signal also demonstrates the dif-
ficulty of the eye crossing motion due to the lower velocity. These 
programs can be used as an addition to the office therapy of the CI 
treatment procedures. Continuous use of the VR headset program 
(Fig. 6C) presents improved eye vergence, acquired from three human 
subjects with no strabismus issues from near point convergence. Users 
indicate the difficulty of converging in earlier tests (accuracy, ~75%), 
which improves over time (final accuracy, ~90%). In addition, we 
found a subject who had difficulty holding the near point convergence 
motions in the VR headset, which was determined to be strabismus 
exotropia (Fig. 6D). This subject was also asked to perform pencil 
push-ups from 3 up to 60 cm in the physical domain (Fig. 6D). The 
corresponding EOG signals upon convergence and divergence during 
the pencil push-ups appear in Fig. 6E. While the right eye signals (blue 
line) show the correct divergence and convergence positions, his left 
eye shows slower response at convergence, followed by an exotropic 
incidence after the blink at the near position. Typically, a blink results 
in high velocity increase and decrease of potentials, but in this case, the 
potential does not decrease after the blink moment. A divergence mo-
tion should increase the EOG potential (as the right eye), but the signal 
drops to 100 V, meaning that the left eye moved outward.

DISCUSSION
Collectively, this work introduced the development of a fully portable, 
all-in-one, periocular wearable electronic system with a wireless, 
real-time classification of eye vergence. The comprehensive study of 
soft and nanomaterials, stretchable mechanics, and processing opti-
mization and characterization for aerosol jet–printed EOG electrodes 
enabled the first demonstration of highly stretchable and low-profile 
biopotential electrodes that allowed a comfortable, seamless integration 
with a therapeutic VR environment. Highly sensitive eye vergence 

Fig. 5. Comparison of ocular classification accuracy between VR and physical 
apparatus. (A and B) Representative normalized data of eye vergence (red line, av-
erage; gray shadow, deviation), recorded with a VR system (A) and a physical apparatus 
(B). The VR device uses a higher signal gain than the physical setup. (C and D) Nor-
malized peak velocities according to the normalized positions for both convergence 
and divergence in the VR (C) and the physical setup (D). (E and F) Summarized com-
parison of averaged classification accuracy (total of six human subjects) based on 
cross-validation with the VR-equipped soft ocular wearable electronics (91% accu-
racy) (E) and physical apparatus (80% accuracy) (F).
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detection was achieved by the combination of the skin-like printed 
EOG electrodes, optimized sensor placement, signal processing, and 
feature extraction strategies. When combined with a therapeutic pro-
gram–embedded VR system, the users were able to successfully improve 
the visual training accuracy in an ordinary office setting. Through the 
in vivo demonstration, we showed that the soft periocular wearable 
electronics can accurately provide quantitative feedback of vergence 
motions, which is directly applicable to many patients with CI and 
strabismus. Overall, the VR-integrated wearable system verified its 
potential to replace archaic home-based therapy protocols such as 
the pencil push-ups.

While the current study focused on the development of the inte-
grated wearable system and demonstration of its effectiveness on vergence 
monitoring with healthy population, our future work will investigate 
the use of the wearable system for home-based and long-term ther-
apeutic effects with patients with eye disorder. We anticipate that the 
quantitative detection of eye vergence can also be used for diagnosis 
of neurodegenerative diseases and childhood learning disorders, both 
of which are topics of high-impact research studies that are bottle-
necked by the lack of low-cost and easy-to-use methods for field 
experiments. For example, patients with Parkinson’s disease exhibit 
diplopia and CI, while patients with rarer diseases such as spinocer-
ebellar ataxia types 3 and 6 can demonstrate divergence insufficien-
cy and diplopia as well (42). Although these diseases are not yet 
fully treatable, quality of life can be improved if the ocular condi-

tions are treated with therapy. Beyond disease diagnosis and treat-
ment domains, the presented periocular system may serve as a unique 
and timely research tool in the prevention and maintenance of ocu-
lar health, a research topic with increasing interests because of the 
excessive use of smart devices.

MATERIALS AND METHODS
Fabrication of a soft, flexible electronic circuit
The portable and wearable flexible electronic circuit was fabricated 
to integrate a set of skin-like electrodes for wireless detection of eye 
vergence. The unique combination of thin-film transfer printing, hard-
soft integration of elastomer and miniaturized electronic components 
allowed the successful manufacturing of the flexible electronics 
(details of the device fabrication appear in section S3 and fig. S2). 
The ocular wearable electronic system includes multiple units: a set 
of skin-like sensors, signal filtering/amplification, Bluetooth low- 
energy wireless telemetry, and an antenna.

Fabrication of soft, skin-like, stretchable electrodes
We used an AJP method to design and manufacture the skin-like elec-
trodes (details appear in section S3 and fig. S5I). The additive man-
ufacturing method patterned AgNPs on glass slides spin-coated with 
poly(methyl methacrylate) (PMMA) and PI. A reactive ion etching 
was followed to remove the exposed polymers to create stretchable 

Fig. 6. VR-enabled vergence therapeutic system. (A) Example of ocular therapy programs in the VR system: Brock String, which is a string of 100 cm in length with three 
beads (top images) and measured eye vergence signals (bottom graph). (B) Program, named Eccentric Circle, that uses a set of two cards with concentric circles on each 
card (top images) and corresponding EOG signals (bottom graph). (C) Continuous use of the VR headset program, showing improved eye vergence, acquired from three human 
subjects with no strabismus issues from near point convergence. (D) Photos of strabismus exotropia, showing a subject who had difficulty holding the near point conver-
gence during pencil push-ups. (E) Corresponding EOG signals upon convergence and divergence during the pencil push-ups; the left eye shows slower response at conver-
gence, followed by an exotropic incidence after the blink at the near position. Photo credit: Saswat Mishra; photographer institution: Georgia Institute of Technology.
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mesh patterns. A flux was used to remove an oxidized layer on the 
patterned electrode. The last step was to dissolve the PMMA in ac-
etone and transfer onto an elastomeric membrane, facilitated by a 
water-soluble tape (ASWT-2, Aquasol).

In vivo experiment with human subjects
The eye vergence study involved 14 volunteers aged 18 to 40, and the 
study was conducted by following the approved Institutional Review 
Board protocol (no. H17212) at the Georgia Institute of Technology. 
Before the in vivo study, all subjects agreed to the study procedures 
and provided signed consent forms.

Vergence physical apparatus
An aluminum frame–based system was built to accustom a human 
subject with natural eye vergence motions in the physical domain 
(fig. S1A and section S4). An 1/8″ thick glass was held erect by a thin 
3-foot threaded nylon rod screwed into a rail car. The rail car could be 
moved to any position, horizontally, along the 5-foot aluminum bar 
at a height of 5 foot. A human subject was asked to place the head on 
an optometric mount for stability during the vergence test. Furthermore, 
a common activity recognition setup was placed at a table consisting 
of a smartphone, monitor, and television. The user was required to 
observe the same imagery on the screen at three different locations.

VR vergence training program
A portable VR headset running on a smartphone (Samsung Gear VR) 
was used for all training and therapy programs (section S4). Unity 
engine made the development of VR applications simpler by accurate-
ly positioning items that mimic human binocular vision. We simulated 
our eye vergence physical apparatus on the VR display and optimized 
head motions by disabling the feature for idealistic geometric posi-
tioning. A training procedure was evoked with audio feedback from 
the MATLAB application.

VR vergence therapy program
The eye therapy programs were chosen on the basis of eye vergence 
and accommodation therapy guidelines from the literature (43). Two 
types of home-based visual therapy techniques were reproduced, 
including Brock String (phase 1) and Eccentric Circles (phase 2). 
Brock String involved three dots, at variable distances to simulate near, 
intermediate, and distance positions. Each individual dot can be moved 
for the near (20 to 40 cm), intermediate (50 to 70 cm), and distance 
(80 to 100 cm) positions. Eccentric Circles allowed the user to move 
the cards laterally outward and inward to make cross-eye motions 
difficult. This motion was controlled by the touchpad and buttons 
on the Samsung Gear VR.

Classification feature selection
The first feature (Eq. 1) shows cumulative trapezoidal method in which 
the filtered signal f(t) is summed upon each unit step, i to i + 1, us-
ing the trapezoidal method for quick computation. The next feature 
(Eq. 2) is the variance of the filtered signal. An RMS is used (Eq. 3), in 
conjunction with peak-to-RMS ratio (Eq. 4). The final feature is a ratio 
of the maximum over the minimum of the filtered window (Eq. 5).

  Ctrapz =  ∑ i=1  1000    ∫i  
i+1

   fi(t ) dt  (1)

  V =   1 ─ 1000 − 1    ∑ i=1  1000    ∣f (t ) − ∣2  (2)

  RMS =  √ 
_________________

    1 ─ 1000    ∑ i=1  1000   ∣ f  i   (t )∣  2  (3)

  Peak2RMS =    
∣max(f(t))∣

  ─ RMS    (4)

  Peak2Peak =      
∣max(f (t))∣

  ─   ∣min(f (t))∣    (5)

The rationalization of the use of the ensemble classifier is supported 
by the MATLAB’s classification learner application. This application 
assesses numerous classifiers by applying k-fold cross-validation using 
the aforementioned features and additional 60 features. The datasets 
from our in vivo test subjects indicated that a couple of classifiers, 
quadratic support vector machine, and ensemble subspace discriminant 
were consistently more accurate than others. The latter is consistent-
ly higher in accuracy with various test subjects in cross-validation 
assessments. The ensemble classifier uses a random subspace with 
discriminant classification rather than nearest neighbor. Unlike the 
other ensemble classifiers, random subspace does not use decision 
trees. The discriminant classification combines the best of the fea-
ture set and discriminant classifiers while removing the weak decision 
trees to yield its high accuracy. A custom feature selection script with 
the ideas of wrapper and embedded methods was conducted by in-
corporating the ensemble classifier.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/11/eaay1729/DC1
Section S1. Conformal contact analysis for aerosol jet–printed electrodes
Section S2. Methods for cross-validation
Section S3. Fabrication and assembly process
Section S4. Vergence physical apparatus and VR system
Fig. S1. Apparatus for testing eye vergence motions.
Fig. S2. Fabrication and assembly processes for the flexible device and the skin-like electrodes.
Fig. S3. Circuit components, bending, and powering of the flexible device.
Fig. S4. Design and characterization of the AgNP electrodes.
Fig. S5. Stretching/bending properties of the skin-like electrodes fabricated by AJP.
Fig. S6. Comparison between Ag/AgCl gel electrodes and aerosol jet–printed skin-like 
electrodes.
Fig. S7. Electrode assessment for subjects 11 to 13.
Fig. S8. Sensitivity of the periocular wearable electronics.
Fig. S9. Performance differences between the periocular wearable electronics and the physical 
apparatus.
Fig. S10. Comparison of average amplitudes from vergence training and a summary of 
classification accuracies.
Table S1. Feature comparison between BioRadio and periocular wearable electronics.
Table S2. OV2 cross-validation accuracies of subjects 1 to 5 using the physical apparatus.
Table S3. OV1 cross-validation assessment of subjects 6 to 10 using the physical apparatus.
Table S4. OV2 real-time classification of test subjects 6 to 10 using the physical apparatus.
Table S5. OV2 real-time classification of test subjects 4, 8, and 9 using the physical apparatus.
Movie S1. An example of a real-time vergence detection with a physical apparatus.
Movie S2. An example of operation of a VR program—Brock String.
Movie S3. An example of a real-time VR-based training apparatus.
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