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A S T R O N O M Y

Primordial formation of major silicates 
in a protoplanetary disc with homogeneous 26Al/27Al
Timothy Gregory1,2,3*, Tu-Han Luu1, Christopher D. Coath1, Sara S. Russell2, Tim Elliott1

Understanding the spatial variability of initial 26Al/27Al in the solar system, i.e., (26Al/27Al)0, is of prime importance 
to meteorite chronology, planetary heat production, and protoplanetary disc mixing dynamics. The (26Al/27Al)0 of 
calcium-aluminum–rich inclusions (CAIs) in primitive meteorites (~5 × 10−5) is frequently assumed to reflect the 
(26Al/27Al)0 of the entire protoplanetary disc, and predicts its initial 26Mg/24Mg to be ~35 parts per million (ppm) 
less radiogenic than modern Earth (i.e., ′26Mg0 = −35 ppm). Others argue for spatially heterogeneous (26Al/27Al)0, 
where the source reservoirs of most primitive meteorite components have lower (26Al/27Al)0 at ~2.7 × 10−5 and 
′26Mg0 of −16 ppm. We measured the magnesium isotope compositions of primitive meteoritic olivine, which 
originated outside of the CAI-forming reservoir(s), and report five grains whose ′26Mg0 are within uncertainty 
of −35 ppm. Our data thus affirm a model of a largely homogeneous protoplanetary disc with (26Al/27Al)0 of ~5 × 10−5, 
supporting the accuracy of the 26Al→26Mg chronometer.

INTRODUCTION
The discovery of correlated 26Mg/24Mg with Al/Mg in refractory 
inclusions in primitive meteorites (1)—chondrites—bore witness to 
the previous presence of live 26Al (26Al→26Mg; t1/2 = ~0.730 million 
years (Ma); see the Supplementary Materials) in the nascent solar 
system, in abundances sufficient to drive melting and metamorphism 
in planetesimals (2), and provide a valuable high-resolution chro-
nometer of early solar system processes (2, 3). Moreover, the inferred 
(26Al/27Al)0 was sufficiently high to place important constraints on 
the birth environment of the solar system and the processes that mixed 
recently synthesized nuclides into the pre-solar nebula and proto-
planetary disc [see (4)].

Solar system (26Al/27Al)0 has largely been derived from analyses 
of “normal” calcium-aluminum–rich inclusions (CAIs): ultrarefractory 
condensates found in unequilibrated chondrites that are the oldest 
dated objects in the solar system (5, 6), and whose age, with a weighted 
mean of 4567.30 ± 0.16 Ma, is commonly taken to represent “time 
zero” of solar system history. Their antiquity and high elemental Al/Mg 
ratios enable precise determination of (26Al/27Al)0. These works (7–9) 
have yielded a canonical (26Al/27Al)0 of ~5.3 × 10−5 that is frequently 
assumed to reflect the (26Al/27Al)0 of the solar system as a whole.

Canonical (26Al/27Al)0 is one order of magnitude higher than the 
galactic background, as measured by -ray spectroscopy (10), indicating 
that 26Al was injected into the nascent solar system from its stellar 
source (11) shortly before or just after the formation of the proto-
planetary disc. This may not have allowed sufficient time for 26Al to 
be spatially homogenized before the CAIs formed. Heterogeneity in 
solar system (26Al/27Al)0 is evident in some rare refractory objects 
(12)—namely, some FUN (fractionation and unidentified nuclear 
isotope effects) CAIs (13), BAGs (blue aggregates), and PLACs (platy 
crustal fragments) (14)—which contain no evidence for live 26Al. 
This observation is commonly interpreted to indicate that these 
inclusions formed before 26Al was injected into the protoplanetary disc 

(15). These unusual objects preserve an interesting window into early 
solar system mixing, but we believe are not representative of the bulk 
of material in the protostellar disc. In this study, we focus only on 
the solar system’s evolution after the condensation of normal CAIs.

Nonetheless, even normal CAIs (hereafter referred to as CAIs) are 
demonstrably anomalous in their isotopic compositions of many 
elements relative to the material that comprises bulk meteorites and 
the terrestrial planets (16, 17). It is therefore reasonable to question 
whether (26Al/27Al)0 determined from CAIs is representative of the 
solar system as a whole. Spatially heterogeneous (26Al/27Al)0 within 
the protoplanetary disc would compromise the utility of the 26Al→26Mg 
decay system for dating early solar system processes, as Al-Mg 
chronometry traditionally assumes the same (26Al/27Al)0 in CAIs and 
the object being dated. Much of the understanding of early solar 
system chronology was developed from the Al-Mg chronometer, so 
assessing the robustness of its underlying assumptions is of para-
mount importance. Previous attempts to assess spatial (26Al/27Al)0 
homogeneity using concordance between Al-Mg and other radio-
isotope chronometers have yielded conflicting conclusions (18–21).

Consequently, there has been much interest in trying to establish 
independent constraints on whether or not (26Al/27Al)0 was spatially 
homogeneous in the protoplanetary disc. An important perspective 
is provided by the evolution of the radiogenic daughter isotope ratio, 
26Mg/24Mg, with time. For (26Al/27Al)0 = 5.32 × 10−5 (8), the initial 
solar system 26Mg/24Mg, expressed in linearized delta notation as 
′26Mg0 [see (22) and the Supplementary Materials], should be 
−34.7 ± 1.4 ppm in order for chondritic meteorite reservoirs to 
evolve to their modern compositions (Fig. 1). We refer to this as the 
“canonical model.”

The most recent, highest-precision analyses of bulk refractory 
inclusions in chondrites define an isochron slope in keeping with 
previous studies, (26Al/27Al)0 of (5.26 ± 0.01) × 10−5, but ′26Mg0 
of −15.8 ± 1.2 ppm (9); this initial ′26Mg0 implies that bulk CI 
chondrites (Ivuna-like carbonaceous chondrites, which are the chondrite 
group thought to best represent the bulk solar system composition) had 
a reduced (26Al/27Al)0 of (2.71 ± 0.21) × 10−5 to evolve to their modern 
′26Mg (Fig. 1). Calculations of (26Al/27Al)0 for bulk ordinary and bulk 
enstatite chondrites based on their modern ′26Mg and 27Al/24Mg, 
assuming that they each had ′26Mg0 of −15.8 ppm (fig. S1), also yield 
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similarly subcanonical (26Al/27Al)0. These observations seemingly provide 
evidence for differences in (26Al/27Al)0 between the portion of the proto-
planetary disc that condensed CAIs and that which contributed to the 
bulk chondrites and, by inference, the reservoir for the terrestrial planets.

If this is the case, the key assumption of spatial (26Al/27Al)0 
homogeneity is invalid, and a substantial reinterpretation of Al-Mg 
chronometry of early solar system objects is required (19). Yet, the 
use of so-called amoeboid olivine aggregates [AOAs: aggregates of 
forsteritic olivine with an oxygen isotopic composition similar to 
CAIs (23)] alongside CAIs in the construction of the isochron that 
yields the intercept ′26Mg0 of −15.8 ppm (9) has been a matter of 
considerable debate as the AOAs strongly influence the value of the 
intercept, but the temporal and genetic relationship between CAIs 
and AOAs is still unclear (24). Hence, we refer to the model with lower 
bulk chondritic (26Al/27Al)0, deduced from the isochron of (9), as the 
“AOA-CAI model” (Fig. 1).

To provide a new perspective on this debate, we have probed the 
evolution of ′26Mg in individual olivine grains from primitive 
meteorites. These low-Al/Mg minerals require minimal correction 
to obtain their ′26Mg0, unlike CAIs, for which measured ′26Mg 
requires considerable extrapolation (and associated uncertainty) to 
return ′26Mg0. Our target grains have a typical 27Al/24Mg of 4 × 10−3 
(see Results), and so, even with a CAI-like (26Al/27Al)0 of 5.3 × 10−5, 
the ingrowth of radiogenic 26Mg (i.e., 26Mg derived from the decay 
of 26Al) would only increase ′26Mg by ~1.5 ppm. This is negligible 
compared to the typical precision of our isotope analyses (~3 ppm) 
and the differences between the ′26Mg we are trying to resolve. We 
assume the measured ′26Mg of the olivines to represent their ′26Mg0. 
In the most straightforward case, if an olivine yields ′26Mg0 signifi-
cantly lower than −15.8 ± 1.2 ppm, this rules out the AOA-CAI model. 

At the same time, we would anticipate no values less than −34.7 ± 
1.4 ppm if the canonical model is correct.

A challenge for this crucial test is to identify for analysis sufficiently 
old olivine that formed outside of the CAI-forming reservoir(s). Given 
that ′26Mg can routinely be measured at the University of Bristol 
to a precision of ±5.0 ppm (2 SE) for the small amounts of magne-
sium available in individual olivine grains (typically <5 g for an 
olivine grain of ~200 m), we can only differentiate olivines that have 
formed before the two modeled curves converge to within ~5.0 ppm 
of one another. This corresponds to a time of formation no later 
than ~1.4 Ma after CAIs.

Previously, the magnesium isotope evolution of the early solar 
system has been investigated using in situ measurements of olivine 
dated in chondrules (25)—quenched melt droplets that formed in 
the protoplanetary disc that are the dominant component of primitive 
meteorites (26)—but these grains were too young, given the precision 
of analysis, to resolve the two scenarios illustrated in Fig. 1 (see also 
fig. S1). Rather than analyze typical chondrule olivine, here, we target 
refractory forsterite grains (RFs) in unequilibrated carbonaceous 
chondrites. RFs are volumetrically minor (27) but ubiquitous in 
unequilibrated chondrites occurring in three petrographic settings: as 
(i) isolated grains in chondrite matrix that formed via fragmentation 
of preexisting chondrules (28), (ii) in situ phenocrysts in magnesium- 
rich (“type I”) chondrules (27) (Fig. 2), and (iii) so-called relict 
grains in the cores of olivine phenocrysts in iron-rich (“type II”) 
chondrules, which represent unmolten chondrule precursors (29). 
The eponymous feature of these grains is their high-Mg/(Mg + Fe) 
and relatively high, but still trace, concentrations of refractory ele-
ments Al, Ti, and Ca in their structure compared to more common 
meteoritic olivine (30). These characteristics are compatible with their 
formation at an early stage of disc evolution in high-temperature, 
low-ƒo2 conditions (31). Moreover, their petrographic relationships 
with later-formed silicates (29), namely, their presence as “relict” grains 
in some type II chondrules, show that they predate at least some 
chondrules. So, although they are not absolutely dated, RFs are 
demonstrably older than at least some chondrules and therefore pre-
serve isotopic information from the solar system’s earliest history.

RESULTS
The refractory nature of RFs is evident in their highly forsteritic 
compositions (Fo>98.5) and elevated refractory element contents 
compared to most chondrule olivine and also AOAs (Fig. 3A). 
With ′17O (mass-independent oxygen isotope composition; see the 
Supplementary Materials) of ~−5.6‰, they are 16O poor compared 
to CAIs and AOAs (Fig. 3B) but are similar to bulk chondrules from 
carbonaceous chondrites (32).

RFs have ′26Mg0 ranging from 8.1 ± 2.7 to −40.2 ± 16.9 ppm 
(Fig. 3C). Critically, 4 (of 13) of our RFs have ′26Mg0 values that are 
significantly lower than the lowest possible ∆′26Mg0 of −15.8 ± 1.2 ppm 
of the AOA-CAI model (9), while none are lower than the lowest 
possible ∆′26Mg0 of −34.7 ± 1.4 ppm of the canonical model (Fig. 3C). 
Because of the low Al/Mg of these objects, this holds true even if the 
minor amount of 26Mg ingrowth is corrected for. The ′26Mg0 model 
ages of RFs, calculated relative to the ′26Mg evolution curve (Fig. 1), 
range from −0.14 ± 0.40 to >4 Ma after CAIs (Fig. 4A). The oldest RFs 
(i.e., lowest ∆′26Mg0) all have high refractory element concentrations 
(Fig. 3, C and D), whereas, in the younger samples, refractory ele-
ment abundances decrease to those of more typical chondrule olivines.
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Fig. 1. Illustration of two ′26Mg evolution models for chondrite parent bodies. 
The canonical model (purple curve), consistent with widespread (26Al/27Al)0 ho-
mogeneity, uses the modern composition of CI chondrites (9, 37, 47) and (26Al/27Al)0 of 
(5.32 ± 0.11) × 10−5 (8, 9) to yield ′26Mg0 = −34.7 ± 1.4 ppm. Ordinary chondrites 
(OC) and enstatite chondrites (EC), two major classes of chondrites, yield statistically 
identical ′26Mg0 based on their modern compositions (9, 37, 47). (ii) The alternative 
“AOA-CAI” model (orange curve) assumes ′26Mg0 of −15.8 ppm (9), consequently 
requiring (26Al/27Al)0 a factor of ~2 lower than the canonical model to evolve to 
modern CI composition, reflecting (26Al/27Al)0 heterogeneity between the portion 
of the protoplanetary disc that condensed CAIs and that which contributed to bulk 
chondrites. Uncertainty bars/areas are ±2 SE.
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DISCUSSION
While there is oxygen isotope heterogeneity among CAIs, the ma-
jority from the least equilibrated (i.e., most petrologically pristine) 
chondrites have isotopically uniform ′17O at ~−24‰, likely reflecting 
the composition of their source reservoir(s) (33). Chondrules have 
a range in ′17O, clustering between ′17O of ~−8‰ and +2‰. It is 
therefore reasonable to use the ′17O of RFs to genetically link them 
with the chondrule-forming region(s) and distinguish them from 
the region(s) of the solar system that condensed CAIs. Although 
′17O variability is commonly argued to result from photochemical 
reactions within the solar system (34), meteorites show covariations 
of ′17O with a range of mass-independent isotope anomalies that 
reflect variable inputs from different stellar sources (35). Why 
isotopic anomalies with such different origins covary is not well 
understood, but empirically, ′17O is a good proxy for heterogeneous 
distribution of pre-solar material in the nebula. The ′17O measure-
ments of our RFs link them to the reservoir of material that formed the 
major silicate component of chondrites, including chondrules (Fig. 3B).

The idea that four RFs have ′26Mg0 lower than the lowest pos-
sible value predicted by the “CAI-AOA model” argues against this 
model’s general applicability and strengthens concerns that inclu-
sion of AOAs and CAIs on the same isochron is ill advised. Rather, 

these four most unradiogenic RFs have ′26Mg0 within uncertainty 
of −34.7 ± 1.4 ppm, the value for the solar system at the onset of CAI 
formation, as calculated using canonical (26Al/27Al)0 for CI chondrites 
(Fig. 1). Because no RF has ′26Mg0 significantly lower than this 
“canonical” value, it seems unlikely that their distinctive magnesium 
isotopic compositions are of a nucleosynthetic origin (i.e., isotope 
anomalies inherited from heterogeneously distributed pre-solar 
carriers). While possible in principle, it would seem implausibly 
serendipitous for these nucleosynthetic compositions to fit exactly 
in the small window predicted by independently constrained radio-
genic decay.

Previously, a positive array of correlating 26Mg and 54Cr anomalies in 
bulk meteorites and CAIs (9, 36) was argued to track coupled het-
erogeneous distribution of (26Al/27Al)0 and stable nucleosynthetic 
anomalies in the protoplanetary disc. The purported correlation was 
strongly pinned by a model ′26Mg0 for the “CAI-AOA reservoir,” 
derived from the intercept of the CAI-AOA isochron (9). As discussed 
above, our measurements argue against the validity of this value. 
Moreover, subsequent work on bulk chondrites has illustrated that 
their variable ′26Mg can be explained by their variable Al/Mg from 
a common canonical initial ′26Mg and 26Al/27Al (37, 38). Thus, the 
arguments made in (9) appear no longer relevant. It has become 

Fig. 2. Examples of RFs as isolated matrix grains (left and right) and in situ phenocrysts in a magnesium-rich (type I) chondrule (middle, dashed outlines). Careful 
high-resolution microexcavation of material adjacent to RFs before microsampling (bottom panels; see also the Supplementary Materials) reduces the risk of inadvertently 
sampling unwanted neighboring material. Top panels are backscattered electron maps, middle panels are K x-ray maps (green, magnesium; blue, silicon; red, aluminum; 
green, olivine; light-blue, pyroxene; pink/red, Al-rich phases), and bottom panels are optical images.
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apparent that Renazzo-like ‘CR’ chondrites are anomalous in their 
magnesium isotopic compositions relative to other chondrites, but this 
has been widely ascribed to magnesium isotope heterogeneity in an 
isolated part of the disc (36), rather than differences in their (26Al/27Al)0.

Thus, our data provide valuable new support for the previous as-
sumption of a spatially homogeneous (26Al/27Al)0 between the CAI 
and the main chondrite-forming reservoirs of the protoplanetary disc. 
Given that CAIs likely formed in close proximity to the young Sun 
(39) and carbonaceous chondrites likely hail from bodies that formed 
in the outer solar system before being scattered into their current 
positions in the asteroid belt (40), this is compelling evidence for 
widespread well-mixed and homogeneous (26Al/27Al)0 across much 
of the early solar system. A homogeneous (26Al/27Al)0 of ~5.3 × 10−5 
returns ∆′26Mg0, consistent with the canonical model for the other 
major classes of chondrites (ordinary and enstatite chondrites; 
Fig. 1 and fig. S1), extending the (26Al/27Al)0 homogeneity to the 
formation reservoirs of diverse classes of chondrites.

The similarity of RFs to chondrules in terms of their oxygen iso-
tope compositions, and their presence as large phenocrysts in type I 
chondrules, suggests that RFs are the products of crystallization 
from parental melts—i.e., they are the products of crystallization of 
chondrule-like objects—rather than direct gas-solid condensates. This 

is consistent with the view that RFs crystallized from condensed 
silicate melts at high-temperature and low-ƒo2 conditions (27). 
Therefore, one interpretation of the model ages of RFs is that they 
represent the crystallization of refractory element–rich condensed 
melts (i.e., refractory element–rich chondrule-forming events).

The range in model ages of RFs indicates either a protracted period 
of formation over ~4 Ma or early formation followed by variable 
reequilibration with an evolving nebula. This latter notion is in keeping 
with ideas of continued chondrule reprocessing and interaction with 
nebula gas [e.g., (41)]. The continuum of RF ′26Mg model ages 
from values as old as CAIs to several Ma younger is consistent with 
single-chondrule Pb-Pb ages (6, 42) but contrasts with the marked 
peak in relatively young ages for internal Al-Mg isochrons for single 
chondrules (Fig. 4, B and C). We attribute the ~2 Ma offset between 
Al-Mg ages of CAIs and chondrules, evident in literature data, to the 
effects of transient thermal events (43) in the protoplanetary disc that 
reset Al-Mg internal isochrons but incompletely reset the Pb-Pb 
chronometer. We suggest that these thermal events largely ceased ~2 
to 3 Ma after CAIs, resulting in most chondrules recording this 
age in their internal Al-Mg ages. Most internal Al-Mg isochrons of 
chondrules are pinned by high-Al/Mg phases [e.g., small plagioclase 
(<20 m) or microcrystalline mesostasis], which are both more fusable 
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and have faster solid-state magnesium diffusion than the larger RFs 
(~100 m). Chondrule ages are thus more readily reset than model 
′26Mg isotope ages in RFs. While the internal Al-Mg isochrons in 
chondrules may constrain the timing of thermal events in the pro-
toplanetary disc, we suggest that they likely do not represent forma-
tion ages.

Although RFs formed within at least ~300,000 years of CAIs, 
they have very different ′17O, illustrating that large-scale oxygen 
isotope heterogeneities were established early in the solar system. 
This suggests that the process(es) that produced these differences 
[e.g., photodissociation of CO (34, 44)] was highly efficient or that 
there was preexisting ∆′17O heterogeneity in the protosolar molec-
ular cloud that was not homogenized by the time CAI formation 
began.

Our inference of common (26Al/27Al)0 (at ~5.3 × 10−5) between 
CAIs and the major silicate phases from the terrestrial planets—and 
asteroid-forming reservoirs—supports the underlying assumption 
of the 26Al→26Mg dating system and therefore reaffirms its validity 
as a widely applicable, high–temporal resolution, early solar system 
chronometer. Moreover, the remarkable antiquity of RFs, calculated 
from their ′26Mg, demonstrates an important before-unseen con-
sistency with chondrule formation ages determined by the extant 
207Pb-206Pb system (6), another cornerstone of early solar system 
chronology.

MATERIALS AND METHODS
We targeted polished sections of two unequilibrated chondrites 
(primitive meteorites that did not experience high degrees of thermal 
metamorphism or aqueous alteration on their parent asteroids) in 
this study: Northwest Africa 4502, a type 3 (45) oxidized Vigarano- 
like carbonaceous chondrite (CV3ox), and Felix, a type 3.3 (46) 
Ornans-like carbonaceous chondrite (CO3.3) borrowed from the 
Natural History Museum, London (identification number: P13341). 
Candidate grains were identified and imaged using scanning electron 
microscopy (backscattered electrons and x-ray energy-dispersive 
spectroscopy) at the University of Bristol (UK), and their in situ 
chemical composition was measured using electron probe micro-
analysis (EPMA) at the University of Bristol. Oxygen isotopes were 
measured in situ via secondary ionization mass spectrometry at CRPG 
(Nancy, France). Before ex situ magnesium isotope measurements, 
each RF was excavated from its host section using a newly developed 
technique that combines laser excavation and microsampling. Mag-
nesium isotope compositions were measured ex situ via multicollector 
inductively coupled plasma source mass spectrometry (MC-ICP-MS) 
at the University of Bristol. These measurements were conducted 
using a modified protocol that allows for small masses of magnesium 
(<5 g) to be measured to high precision (typically better than ±3 ppm 
on ′26MgDSM-3, ±2 SE). The reader is referred to the Supplementary 
Materials for the detailed analytical and microsampling protocols.

C

B

A

−

Fig. 4. The onset of the solar system’s rock record as recorded by Al-Mg and Pb-Pb systematics in chondrites. (A) Magnesium ′26Mg0 model ages of RFs (this study), 
which span from CAI formation (time zero) to ~3 to 4 Ma. (B) Kernel density estimate curves of Al-Mg bulk CAIs and internal chondrule ages (literature sources; see the 
Supplementary Materials), showing a well-defined CAI peak and a broad chondrule peak ~2 to 3 Ma later. (C) Pb-Pb ages of individual chondrules (literature sources; see 
the Supplementary Materials) range from CAI formation to ~4 Ma, similar to the distribution of our RF model ages. All uncertainties are ±2 SE.
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