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3D printed deformable sensors
Zhijie Zhu1, Hyun Soo Park2, Michael C. McAlpine1*

The ability to directly print compliant biomedical devices on live human organs could benefit patient monitoring 
and wound treatment, which requires the 3D printer to adapt to the various deformations of the biological surface. 
We developed an in situ 3D printing system that estimates the motion and deformation of the target surface to 
adapt the toolpath in real time. With this printing system, a hydrogel-based sensor was printed on a porcine lung 
under respiration-induced deformation. The sensor was compliant to the tissue surface and provided continuous 
spatial mapping of deformation via electrical impedance tomography. This adaptive 3D printing approach may 
enhance robot-assisted medical treatments with additive manufacturing capabilities, enabling autonomous and 
direct printing of wearable electronics and biological materials on and inside the human body.

INTRODUCTION
Three-dimensional (3D) printing technologies have been rapidly 
evolving over the past few decades and now include capabilities such 
as robocasting (1) and inkjet printing (2) that can three-dimensionally 
interweave a diverse palette of materials beyond hard plastics, such 
as 3D-printed conductors (3–5), semiconductors (6, 7), and bio-
materials (8). Looking ahead, 3D printing could enable soft, com-
pliant biomedical devices and sensors to be fabricated on the skin 
and inside the body, advancing portable patient monitoring (9, 10), 
wound treatment (11), and organ function augmentation (12). As 
an example, spatiotemporal measurements of lung deformation under 
mechanical ventilation can provide valuable information for studies 
of respiration mechanics (13), diagnoses of chronic lung diseases 
(14), and therapies for lung cancer (15).

Despite this promise, the medical impact of existing 3D printing 
technologies remains nascent. In medical applications, the target live 
biological surfaces are typically soft and undergo persistent motion 
and deformation. This time-varying geometry fundamentally limits 
the applications of existing 3D printing systems that were built upon 
an open-loop paradigm, in which a prescribed design is first manu-
factured offline on a calibrated planar substrate and then transferred to 
the target biological surface (1). This renders the fabrication “blinded” 
to the applied surface, leading to a Procrustean transfer. This is due 
to the mismatched interface between the as-fabricated sensors, with 
determinant form factors, and the target surfaces, with diverse, 
unique form factors that vary by user and with time. For instance, it 
may not be applicable to a nonplanar, dynamically morphing organ 
such as a lung. Moreover, fragile 3D constructs such as hydrogel 
materials can be disrupted during manual handling, transportation, 
and transplantation processes, which are susceptible to contamina-
tion. Also, manual transfer processes can result in operational in-
accuracies and unpredictable human error. An alternative solution 
is in situ printing for seamlessly integrating the sensors on the target 
surface in an autonomous manner. To enable in situ printing, a new 
functionality is needed: a closed-loop artificial intelligence (AI) that 
can dynamically adapt the fabrication process by sensing the time-
varying geometric states of the biological substrates in real time.

For in situ printing on a static target surface of an irregular shape, 
3D scanners have been used in reverse engineering procedures to 

acquire accurate surface geometries for in situ printing of skin cells 
on wound beds (16). More recently, we developed a real-time closed-
loop system that tracked the motion of a nondeforming human 
hand to perform in situ 3D printing of electronic tattoos directly on 
the skin (17). However, these approaches are not applicable when 
the soft tissues are undergoing complex surface deformations such 
as expansion and contraction. The development of a computationally 
efficient algorithm that can robustly and precisely track the high-
dimensional deformation data is required. Here, we propose to model 
the space of deformation of the target surface using a shape basis model 
that can be learned from a dataset of 3D scans. With the learned 
shape model, accurate surface geometry can be recovered in 3D via 
a set of fiducial markers tracked by a stereo camera system. The re-
covered geometry is then used to dynamically adapt the 3D printing 
toolpath in real time.

The strain sensor for deformation measurements must be com-
patible with the lung tissue surface and in situ 3D printing process. 
Conventional sensor design strategies for spatial mapping of surface 
deformation are based on the dense packing of miniature sensor 
arrays, electrodes, and interconnects to improve the measurement 
resolution (18–22). This precision-demanding approach is not com-
patible with in situ 3D printing due to the uncertainties during 
printing. Alternatively, an electrical impedance tomography (EIT) 
sensor has a simple geometric design without sacrificing spatial res-
olution of sensing (23). Stretchable EIT sensors based on carbon-
elastomer composites as the conductive sensing materials have 
previously been developed to enable multidirectional strain mapping 
(24). Yet, the Young’s modulus of this composite is one order of 
magnitude larger than lung tissue (25).

Alternatively, ionic hydrogels have high transparency and stretch-
ability while maintaining conductivity with high-speed responses (26). 
Although ionic hydrogel strips have been used as linear strain sen-
sors (27), hydrogel-based EIT sensors for continuous strain mapping 
have yet to be demonstrated. We incorporated an ionic hydrogel with 
EIT technology to enable 3D-printed wearable sensors for in situ spatio-
temporal mapping of 2D volumetric strain (2D-VS). Compared with 
previous work with densely packed discrete sensing modules, or EIT 
approaches with nonconforming materials, our design approach 
enables a previously undiscovered design of strain sensor with several 
advantages, including (i) simplicity in sensor geometry, (ii) desirable 
sensing resolution, and (iii) ideal mechanical compliance to soft tissues. 
To demonstrate the closed-loop 3D printing system for real-time track-
ing of target deformation, a hydrogel-based EIT strain sensor was directly 
3D printed on a breathing lung for in situ monitoring of deformations.
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RESULTS
Real-time 3D surface tracking
We previously demonstrated real-time tracking of rigid-body motions 
of the target surface, including 6 degrees of freedom (DoF) in total 
for translation and rotation. This closed-loop strategy was shown to 
be effective for printing directly on moving objects without surface 
deformations, such as the back of a human hand (17). However, it is 
not applicable to dynamically morphing surfaces that require higher 
DoF to express their geometry. Here, we propose a previously un-
reported printing procedure to fabricate an EIT strain sensor on a 
deformable lung by integrating a visual sensing system with the 3D 
printer to track the time-varying 3D geometry.

A stereo camera system could be used to recover the time-varying 
3D geometry of the target surface in real time. However, direct ap-
plication of existing stereo reconstruction algorithms would not meet 
the desired specifications for closed-loop in situ 3D printing, which 
are (i) millimeter- or submillimeter-level precision to minimize the 
resultant errors that would cause collision of the dispensing nozzle 
into the tissue and reduce print quality or injure the tissue, (ii) short 
sensing range (~0.1 m) based on the restricted printing workspace, 
and (iii) high reconstruction rate (>5 Hz), which is an order of 
magnitude faster than the adult respiration rate at rest (~12 to 
20 breaths/min), to minimize tracking errors. Stereo reconstruction 
involves exhaustive patch matching across a line of search in an image, 
which results in computational latency. Note that the reconstruction 
rate we define here not only is for the reconstruction of the geometry 
of each individual shape but also should provide correspondence 
information among a time series of shapes to represent how the shape 
evolves (e.g., spatial shift of feature points during deformation).

Instead of using stereo cameras to directly reconstruct the dense 
geometry, we used a two-phase procedure: (i) We first learned the 
low-dimensional parametric model of the surface geometry from a 
prescanned dataset offline to reduce the computational complexity 
for the subsequent online process; (ii) we then recovered the con-
formal toolpath geometry online by estimating the parameters in 
the offline-learned model using a sparse set of fiducial markers mea-
sured by the stereo camera in real time.

For offline learning, we adopted a structured-light 3D scanner 
with submillimeter-level accuracy and resolution. Multiple high-
fidelity 3D scans of the deformed lung with fiducial markers were 
acquired by the 3D scanner (Fig. 1A). On the basis of the 3D scans, 
we constructed a training dataset of point clouds with pointwise 
correspondence among data samples and used a machine learning 
algorithm to learn the linear shape basis model (28–33) of the sur-
face deformation. For online tracking, the stereo camera system 
consisting of a pair of synchronized machine vision cameras with 
high sampling rate (maximum 149 Hz) and adjustable foci (~0.1 m) 
tracked the fiducial markers in 3D (Fig. 1B). The marker locations 
allowed for the full recovery of shape deformation based on the 
learned deformation model. This reconstruction was used as an input 
to estimate the conformal toolpath for adaptive printing on a breath-
ing lung in real time (Fig. 1C). The printed EIT strain sensor was 
compliant to the deformation of the lung and could provide in situ 
spatiotemporal mapping of lung deformation (Fig. 1D).

Here, we adopted the fiducial marker system to improve robust-
ness and accuracy for tracking textureless surfaces or surfaces with 
sparse features and specular reflection, typical of wet anatomical sur-
faces. Real-time tracking of such deformable surfaces with a marker-
less system remains an open research area in computer vision and 

medical imaging (34, 35). For future improvement of our 3D sur-
face tracking system, data-driven dense tracking approaches based 
on deep learning (36) and parallel computing (37) could be lever-
aged to enable markerless tracking.

Offline shape learning
In offline shape learning, the 3D displacement of the printing tool-
path induced by the target surface deformation was modeled with 
respect to the movement of the fiducial markers. This allowed dy-
namic shape adjustment of the toolpath based on marker locations 
tracked by the stereo cameras during online tracking. The deformable 
toolpath was represented using 12 fiducial markers and 3968 tool-
path waypoints in 3D. Specifically, the marker locations were extracted 
from the point cloud by detecting the 2D marker features in the 
scanned texture image and then specifying their corresponding 3D 
positions in the point cloud. The waypoints on the conformal tool-
path were computed by projecting a planar design of the toolpath 
for the sensor model to each 3D-scanned point cloud of the lung sur-
face (Fig. 2A). Before projection of the planar toolpath to obtain the 
waypoint correspondence among all scans, we performed a shape 
correction of the planar toolpath (fig. S1, A to E), such that the pro-
jected toolpath could reflect the physical growth in the size of the sensor 
when the surface expanded, and the shrinkage in size of the sensor 
when the surface contracted (Supplement 1). The distance between 
adjacent waypoints on the planar toolpath pattern (with a total length 
of 2010 mm) was set to be 0.5 mm, to replicate the detailed shape of 
the deformable surface with high fidelity after projection. This ap-
proach for forming the deformation training dataset with pointwise 
correspondence effectively reduces the dimension of the original raw 
point cloud data from the 3D scanner (with the number of 3D points 
in each scan on the scale of 105) to a lower-dimensional format con-
sisting of only the marker locations and 3D waypoints on the printing 
toolpath (3980 3D points in each training data sample).

Fig. 1. Process of in situ 3D printing of EIT sensor on a breathing lung. Schematic 
images of (A) 3D scanning of the lung surface, (B) real-time tracking of the breathing 
lung, (C) adaptive printing of the hydrogel ink on the breathing lung, and (D) in situ 
monitoring of lung deformation with the EIT sensor.
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Fig. 2. Closed-loop AI for deformation estimation. (A) Computation of conformal toolpaths from 3D scans. (B) Shape basis vectors with four largest eigenvalues in PCA 
analysis. Each SBV is represented by a 3D vector field (color coded by magnitude) of waypoint displacement originating from the base shape (in gray). The density of the 
waypoints is down-sampled by a factor of 11. The values of the maximum magnitudes are normalized by the square root of the corresponding eigenvalue for quantitative 
comparison under uniform scale. The visualized vector fields are scaled to fit in each subplot. (C) Position errors (in the form of norms) between the 3D scans and the 
estimated shapes reconstructed on the basis of two, four, and six SBVs and 3, 6, and 12 markers. (D) Snapshot image from the tracking camera, which shows real-time 
detection of the circular markers (blue squares as the dynamic searching windows, green contours as the circumferences of the circular markers, and green dots as the 
centers of the detected circles), the estimated lung pose (X, Y, and Z axes in blue, green and red, respectively), and the waypoints (blue dots) along the conformal toolpath 
to be followed by the tip of the nozzle. Photo credit: Z.Z., University of Minnesota. (E) Time series of four fitted deformation parameters collected from a breathing lung.
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On the basis of the shape data consisting of seven point clouds of 
marker locations and projected toolpath waypoints, we computed the 
linear shape basis model using principal components analysis (PCA) 
(Supplement 2). The outputs of this PCA were six orthonormal shape 
basis vectors (SBVs), which spanned the space of the deformation 
field, and six corresponding eigenvalues sorted in descending order 
(fig. S1F and Fig. 2B).

We studied the effect of taking different numbers of SBVs and 
markers in the deformation model on the accuracy of shape re-
construction and found that choosing the SBVs with the four 
largest eigenvalues and all 12 markers for shape reconstruction re-
sulted in a substantial reduction in estimation error compared with 
the rigid-body approximation (Fig. 2C and fig. S1G). Inclusion of 
all six SBVs in the deformation model can further reduce the esti-
mation error on the training data. However, the resulting accuracy 
is unrealistic for 3D printing platforms. This may cause overfitting 
problems by taking the noisy deformation modes with smaller eigen
values into consideration. Note that the shape estimation error 
studied here is only one source of printing error. Other sources of 
error include the time delays caused by data sampling, computa-
tion, and communication in the following online-tracking phase 
(table S1).

Online shape tracking
Two machine vision cameras (FLIR Systems) were mounted on the 
extrusion head for the real-time sensing process. Hand-eye calibra-
tion was first performed to specify the transformation between the 
camera and the 3D printer coordinate systems. During real-time 
tracking, circular markers on the lung surface were detected in each 
pair of synchronized images from the dual camera system and used 
to compute the 3D coordinates of the markers via stereo triangulation 
(Fig. 2D and movie S1). On the basis of the marker locations and the 
deformation model with four SBVs, four corresponding deformation 
parameters were fitted in real time using least squares regression. 
The time series of parameters can reflect the quasi-cyclic patterns of 
lung deformation during respiration (Fig. 2E) and were used to es-
timate the time-varying conformal toolpath that was adaptive to the 
target dynamics as a combination of rigid-body motion (approximated 
from the template of the base shape) and shape deformation (movies 
S2 and S3). Although there were circumstances when not all 12 markers 
were detectable by both cameras due to occlusion or exclusion from 
the camera field of view, the redundancy in the total number of mark-
ers guaranteed robust and precise tracking with no less than eight 
detectable markers. After the adaptive toolpath was transformed to 
the 3D printer coordinate system based on hand-eye calibration 
results, the extrusion nozzle followed user-specified printing speed 
profiles and the resampled waypoints based on an interpolation of 
the time series at each present time step. The adaptive printing 
commands for in situ 3D printing of the EIT sensor model were up-
dated at a refresh rate of approximately 15 to 29 Hz.

Note that this deformation estimation was necessary to achieve a 
desirable print quality with an error tolerance of ±0.8 mm (combining 
the errors from the time delay and shape modeling), which was spec-
ified on the basis of the ink viscosity and the inner diameter of the 
extrusion nozzle (0.61 mm). The incorporation of deformation esti-
mation reduced the mean error of shape modeling from 0.3 mm 
(no deformation estimation) to below 0.02 mm (Fig. 2C). This error 
reduction allowed the total error to be within the ±0.8 mm tolerance 
under a large time delay error of ~0.6 mm, computed on the basis of 

a time delay of ~60 ms and a point velocity of ~10 mm/s induced by 
the lung deformation (15).

Ionic hydrogel ink
The convergence of excellent stretchability, transparency, and con-
ductivity renders ionic hydrogels ideal candidates for large strain 
sensing with EIT. Unlike opaque filler-matrix composites such as 
carbon embedded elastomers, which exhibit nonlinear, irreversible 
responses of conductivity under transient excitation (38), the con-
ductivity of ionic hydrogels was shown to be independent of stretch 
(39). As a result, material conductivity can be assumed constant, such 
that the variation of material resistance under strain is solely deter-
mined by a geometric factor (26). This sensing mechanism enables 
a simple and robust computational model for repeatable and stable 
strain reading without requiring sophisticated algorithms to com-
pensate for nonlinearities in material conductivity (38).

In our design of the hydrogel ink, we adopted lithium chloride 
(LiCl) for ion conduction due to its hydroscopic property, which 
prevents dehydration (40). A stretchable and ultraviolet (UV) cur-
able polymer, polyacrylamide (PAM), was chosen as the matrix in 
the ionic hydrogel. The mixing ratio of monomer, polymer, and cross-
linker in the hydrogel precursor was optimized for desired print-
ability and elasticity in the 3D printing process. In the finalized 
ink design, shear thinning behavior was observed with decreasing 
viscosity above the shear rate of 0.1 s−1 (fig. S2, A and B). This lower 
viscosity enabled smooth extrusion of the ink from the printing nozzle 
under pneumatic pressure. In addition, the decreases in storage mod-
ulus (G′) and loss modulus (G″) beyond the yield shear stress (~60 Pa) 
improved the controllability of ink extrusion (Fig. S2C). G′ and G″ 
remain constant at ca. 67 and 49 Pa, respectively, when the shear 
stress is below the yield point, which facilitates shape retention of 
the printed structure.

After cross-linking using UV light, the hydrogel ink demonstrated 
tissue-like stretchability according to uniaxial tensile test results (fig. S3, 
A to D). This was further supported by dynamic mechanical char-
acterizations in the frequency range of adult respiration at rest (~12 
to 20 breaths/min), with the storage modulus (E′) and loss modulus 
(E″) of the hydrogel on the same order of magnitude to those of 
lung tissue (fig. S3, E and F). The matching of moduli holds at higher 
frequencies toward 2 Hz as well (fig. S3, G and H), thus extending 
the working conditions of this hydrogel-based sensor to a wider 
range of respiration rates, e.g., for patients with acute respiratory 
distress (41).

EIT deformable sensor
The EIT sensor consists of a continuous thin layer of hydrogel as 
the sensing layer and multiple copper electrodes at the boundaries 
(Fig. 3A). A major challenge for deformation sensing is to maintain 
stable hydrogel-electrode interfaces under large deformations in-
duced by lung expansion and contraction. Here, we rectified this 
problem by embedding the copper electrodes in a soft silicone ring 
(Ecoflex 00-30, Smooth-On Inc.) that could form chemical bonds 
with the hydrogel (fig. S4). Specifically, the silicone surface was ac-
tivated via application of benzophenone photoinitiator (BP), which 
generated radical sites that can react with the acrylamide in the hy-
drogel upon exposure to UV light. Although the silicone elastomer 
is stiffer than the hydrogel material (fig. S3, D to H), the resultant 
constraints on the stretchability of the sensor and mechanical com-
pliance were limited because of the flexibility of its ring geometry 
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with high aspect ratio (~1-mm thickness, 33-mm inner diameter, 
and 38-mm outer diameter).

The peripheral operating circuitry of the EIT sensor consisted of 
a microcontroller (Teensy 3.6) for measurement control and data 
acquisition, a waveform generator (Rigol DG1022) and a voltage-
controlled current source (VCCS) as a power supply, an ADC pre-
amplifier for noise filtering, and input/output multiplexers for 
switching of electrodes for current sourcing and voltage measure-
ments (Fig. 3B and fig. S5). The spatial distribution of sheet conduc-
tivity within the hydrogel layer was mapped by sequential four-point 
impedance measurements with different pairs of electrodes for cur-
rent sourcing and voltage measurement. Ionic hydrogels were used as 
electrolytes for ionic conduction (26). Upon application of a volt-
age potential at the electrode/hydrogel electrolyte interface, an elec-
trical double layer was formed at the interface between the electrode 
and hydrogel (26), which is equivalent to a capacitor in series with 

the conductive sensing layer. Thus, an alternating current (AC) source 
with low amplitude (less than 1 mA) was applied to avoid an electro-
chemical reaction and eliminate the effect of capacitor impedance 
(26, 27). Similar methods to measure electrical impedance with AC 
sources have been used for ionic conduction in liquid and solid 
electrolytes (42). Since the conductivity of the conductive layer (~20 S/m) 
was more than one order of magnitude higher than the lung tissue 
(43), current leakage to the tissue was not substantial when low cur-
rent levels were applied and had negligible impact on organ behavior 
and measurement results.

The distribution of sheet conductivity within the sensing layer 
was computed by solving the inverse problem of a finite element 
model based on the impedance measurements from the electrodes 
(44). The size of the triangular mesh in the finite element model 
is approximately 1.4 mm in side length, resulting in a spatial reso-
lution comparable to those in the literature involving lung shape 

Fig. 3. Design and characterization of the EIT deformable sensor. (A) Schematic image of the layered design of the hydrogel-based EIT sensor, with the inset image 
showing a zoom-in view of the formation of the silicone-hydrogel interface when treated with BP under UV light exposure. (B) Schematic image of the peripheral operating 
circuitry for the EIT system with eight electrodes. MUX, multiplexing; DC, direct current. (C) Photograph of the EIT sensor with markers for deformation validation. The 
rectangular region enclosed in the black dashed line demonstrates the ROI for error characterization. Photo credit: Z.Z., University of Minnesota. (D) Estimation error as 
a function of 2D-VS for all data points collected from six deformation states. The data points are visualized in the form of point clouds with distinct colors corresponding 
to different deformation states. The colored dots with black borders as well as horizontal and vertical error bars show the mean values and SDs for each deformation 
state (n = 1843). (E) Mean voltage measurement from all pairs of electrodes as a function of time, with the colored dots with black borders showing the six deformation 
states corresponding to the point clouds in (D). (F) 3D scan of the surface on the EIT sensor undergoing deformation with 20.4% mean 2D-VS, as well as the corresponding 
EIT estimation, ground truth from 3D scan, and EIT estimation error of the 2D-VS distribution within the ROI (left to right).

 on M
arch 2, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Zhu et al., Sci. Adv. 2020; 6 : eaba5575     17 June 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 10

reconstruction based on computed tomography (CT) scans (45, 46). 
The strain map was then estimated on the basis of the correlation 
between sheet conductivity and 2D-VS, which was modeled as

	​​  ​​ t​​ − ​​ 0​​ ─ ​​ 0​​  ​  = ​ (1 + ​​ A​​)​​ −1​ − 1​	

Here, 0 and t are local sheet conductivities of an infinitesimal 
region before and after deformation. A is 2D-VS defined by A = 
(At − A0)/A0, with A0 and At denoting the surface areas of the infini-
tesimal region before and after deformation, respectively. Because 
the Poisson’s ratio of PAM-based hydrogels is close to 0.5 (47), the 
conductive layer was approximated as an incompressible material 
in this estimation model (Supplement 3).

To verify this model with the EIT configuration of eight electrodes 
and circular sensing region, we compared the EIT strain mapping 
results with the ground truth on a custom-built test bed. The test 
bed consisted of a rubber membrane with a soft EIT sensor adher-
ing to it and a pneumatic system that controlled the expansion and 
contraction of the membrane (fig. S6, A to C). Forty measurements 
were taken from adjacent pairs of electrodes for one complete esti-
mation of the strain map (fig. S6D), which was refreshed at a frequency 
of 2.5 Hz in real time (movie S4). The ground truth distribution of 
2D-VS was acquired by tracking the motions of markers attached to 
the surface of the EIT sensor with a 3D scanner (Fig. 3C). To char-
acterize strain mapping errors under different levels of surface de-
formation, we recorded spatiotemporal sensor responses as well as 
the corresponding ground truth 2D-VS ranging from −3.54 to 41.6% 
in six sampled shapes (Fig. 3, D and E). This range of 2D-VS is on 
the same scale of the range of lung deformation collected from human 
subjects (48). The estimation error was computed by subtracting the 
EIT estimation from the ground truth of strain map in each sam-
pled shape (Fig. 3F and fig. S7). According to the characterization 
results, the mean estimation error was independent of the strain level, 
with the maximum mean error of 5.25%. The relative error of strain 
estimation computed on the basis of the definition in (46) was 6.72% 
under the largest tested mean 2D-VS (33.55%). This is comparable 
to the results under similar strain levels in CT-based reconstruction 
approaches using a finite element method and a B-spline method 
(46). This EIT-based sensing approach provides an alternative method 
for direct, localized measurement of lung deformation, and can com-
plement noninvasive approaches such as CT scanning in medical 
applications. The EIT estimation accuracy could be further improved 
by (i) optimizing printing fidelity to minimize geometric discrepancy 
between the fabricated sensor and the EIT computational model, 
(ii) increasing the number of electrodes for larger numbers of volt-
age measurements to reduce the computational error for inverse 
solving of the ill-posed EIT problem, and (iii) improving the ro-
bustness of current sourcing and voltage measurement systems to 
compensate for noises and disturbances during the signal process-
ing phase.

In situ deformation monitoring
We demonstrated the in situ 3D printing capability of the AI-powered 
3D printing system by directly fabricating the EIT strain sensor on 
a porcine lung (BioQuest) undergoing respiration-induced defor-
mation. First, temporal tracking markers with black circular dots on 
a white background were attached to the lung surface via biocom-
patible adhesives (Skin Tite, Smooth-On) to serve as robust features 
for computer vision–based tracking. To simulate the deformation 

of the porcine lung in vitro, the trachea was connected to the output 
of a digital pneumatic regulator (Nordson EFD), which was pro-
grammed by a computer to controllably supply air to the alveoli. 
Each level of supplied pressure resulted in a respiration state and a 
corresponding shape deformation of the lung. The surface geometry 
under each deformation state was then sampled by a structured 
light scanner (HDI 109, LMI Technologies) to form the dataset for 
the machine learning algorithm to learn the deformation model 
(Fig. 4A).

The custom-built printing platform consisted of a 3D printing 
gantry system with micrometer-level motion control precision (AGS1000, 
AeroTech), a material extrusion system controlled by a pneumatic 
regulator, two machine vision cameras (FLIR Systems) mounted on 
the extrusion head for vision-based tracking, and an illumination 
system assisting the camera system for optimal image quality (Fig. 4B). 
During printing, the lung underwent continuous deformations with 
a respiration rate of about 12 breaths/min, which was controlled by 
a cyclic pressure input from the pneumatic regulator (Fig. 4C and 
movie S5). Note that this prior information of breathing actuation 
was not used for the real-time tracking algorithm. Adaptive 3D print-
ing of the EIT deformation sensor was only based on the real-time 
image streams from the tracking cameras and the learned deforma-
tion model, resulting in a circular layer of hydrogel on the lung (Fig. 4D) 
with mean printing error of 0.657 mm (fig. S8A). The electrodes 
embedded in the silicone ring were then attached to the printed layer 
and exposed to UV light (OmniCure model S1500; wavelength, 320 
to 500 nm) for cross-linking of the hydrogel (Fig. 4E). A stable 
hydrogel-electrode interface was also achieved via the formation of 
silicone-hydrogel bonds during UV light curing. The interface was 
tested to be able to survive substantial mechanical stretches (movie S6).

To demonstrate in situ deformation monitoring with the 3D-
printed EIT sensor, the electrodes were connected to power supplies 
and a desktop computer via the peripheral circuitry for signal pro-
cessing (Fig. 4F). Spatial mapping of 2D-VS was estimated and dis-
played in real time (movie S7), which captured the cyclic contraction 
of the region of interest (ROI) (Fig. 4G). The EIT sensor was able to 
adhere to the lung surface under repetitive deformation. After the 
functions of the sensor were fulfilled, the hydrogel layer and the 
tracking markers together with the biocompatible adhesives could 
be removed using a tweezer without leaving any noticeable residue 
(fig. S8, B to D).

Multimaterial printing on phantom face
To demonstrate the capability to print multiple materials on a de-
formable target surface comprising a complicated geometry consisting 
of convex and concave features, colored silicone inks were printed 
on a deformable phantom consisting of a silicone film with a casted 
face geometry. Twelve tracking markers were distributed on the phan-
tom face for visual tracking before 3D scanning was performed to 
sample eight deformed shapes of the phantom face. Planar toolpaths 
for features of the eyebrow, eyes, nose, and mouth were then pro-
jected to the 3D scans to form the training dataset (Fig. 4H). Because 
of the higher complexity in the deformation behavior of the phan-
tom face due to a nonuniform distribution of thickness (hence stiff-
ness) on the membrane, all the SBVs from the PCA analysis were 
used for real-time shape reconstruction to capture as many modes 
of deformation as possible. Silicone inks (Ecoflex 00-30, Smooth-On) 
colored by four types of color pigments (Silc Pig, Smooth-On) were 
directly printed on the phantom face undergoing expansion and 
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contraction driven by a pneumatic system (movie S8). The resulting 
mean tracking error was 0.841 mm, with an SD of 0.350 mm, demon-
strating spatial control capability of the closed-loop 3D printing sys-
tem for multimaterial printing of irregular patterns on a complex 
shape (Fig. 4I). The lower printing precision compared with that of 
printing on the porcine lung was a consequence of the higher ap-
proximation error during reconstruction of the complex geometry 
with the limited size of the training dataset.

DISCUSSION
We demonstrated in situ monitoring of lung deformation with a soft 
sensor that was 3D printed in vitro on a breathing lung. This was 
realized by the development of an AI-powered 3D printing system 
that can adapt to the deformation and motion of the target surface, 
as well as the unique design of a hydrogel-based EIT sensor for spa-
tiotemporal mapping of 2D-VS. In the development of the adaptive 
3D printing system, we showed the effectiveness of the approach to 
estimate surface deformation in the form of a dynamic point cloud, 
by combining “offline” machine learning with “online” computer 

vision–based tracking. In the sensor design, we integrated a con-
ductive hydrogel ink with an EIT sensing configuration to enable 
additive manufacturing of stretchable strain sensors with mechanical 
compliance to the lung surface and superior sensing resolution. In 
situ 3D printing of functional devices and materials on and inside 
human bodies could stimulate a new frontier of surgical robotics in 
tandem with additive processing. This could aid modern medical 
treatments in myriad ways, such as printing electrode arrays for 
neural interfaces and printing bioscaffolds with engineered cells for 
tissue regeneration (49). For instance, in clinical applications where 
injections of biological materials such as surgical glue (50) and skin 
grafts (49) are required, in situ autonomous 3D printing could re-
place manual operation, which is often inconsistent under different 
printing scenarios, to achieve precise spatial control over long time 
durations. Future studies will focus on the following: (i) investigating 
and improving the biocompatibility of the hydrogel sensors with 
in vivo experiments, (ii) optimizing the material system for fully 
3D printed electrode interfaces with improved adhesion and me-
chanical compliance, (iii) developing portable and noninvasive un-
tethered solutions for supplying power and communicating data with 

Fig. 4. 3D printing on a porcine lung for in situ monitoring of deformation and 3D printing on a deformable phantom face. (A) 3D scanning of the porcine lung 
with a structured light 3D scanner. Photo credit: Z.Z., University of Minnesota. (B) Photograph of the custom-built 3D printing gantry system. Photo credit: Z.Z., University 
of Minnesota. (C) Photograph of in situ 3D printing of hydrogel ink on a porcine lung. Photo credit: Z.Z., University of Minnesota. (D) Photograph of the 3D printed circular 
layer of hydrogel. Photo credit: Z.Z., University of Minnesota. (E) UV light curing of the hydrogel layer with the silicone ring and embedded electrodes. Photo credit: Z.Z., 
University of Minnesota. (F) Photograph of the hardware setup for in situ monitoring of lung deformation with the printed EIT sensor. Photo credit: Z.Z., University of 
Minnesota. (G) Spatiotemporal mapping results of 2D-VS within the ROI on a porcine lung undergoing cyclic contraction. (H) Projection of the toolpath (in blue) on the 
3D scan of the base shape (upper), and projection of the toolpath with (in blue) and without (in red) shape correction on the 3D scan of a deformed shape of the phantom 
face (lower). The three reference axes (in green) were used to estimate the surface expansion ratio for shape correction. (I) Photograph of the 3D-printed eyebrow, eyes, 
nose, and mouth on the phantom face with multicolored silicone inks. Photo credit: Z.Z., University of Minnesota.
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the sensor, (iv) improving printing precision by incorporating ad-
vanced AI such as predictive algorithms to anticipate future defor-
mations and motions, and (v) deploying the in situ printing controller 
on minimally invasive robotic platforms for surgical applications.

MATERIALS AND METHODS
Hydrogel ink design
The final design of the hydrogel ink for additive manufacturing of 
EIT strain sensors consisted of 7.9 weight % (wt %) acrylamide as 
the monomer, 3.16 wt % PAM (MW = 5,000,000) as the rheology 
modifier, 21.48 wt % LiCl, 0.13 wt % N,N′-methylenebisacrylamide 
as the cross-linker, 0.08 wt % 2-hydroxy-2-methylpropiophenone 
as the photoinitiator, and 37.6 wt % ethylene glycol along with 29.64 wt % 
ultrapure water as the solvents.

EIT sensor material preparation
The ionic hydrogel ink was prepared by first dissolving LiCl and 
acrylamide monomer (Sigma-Aldrich) in deionized water, followed 
by the addition of ethylene glycol (Fisher Chemical). After a homo-
geneous solution was formed via thorough mixing, PAM (Sigma-
Aldrich) was added to the solution and then magnetically stirred 
overnight at 60°C at 1200 rpm. Last, N,N′-methylenebisacrylamide 
(Sigma-Aldrich) and 2-hydroxy-2-methylpropiophenone (Sigma-
Aldrich) were added to the solution and magnetically stirred for 
2 hours. After loading into a syringe for 3D printing, the ink was 
defoamed in a planetary centrifugal mixer (Thinky ARM-310) at 
2200 rpm.

Silicone elastomer was prepared by mixing parts A and B of Ecoflex 
00-30 (Smooth-On) with a ratio of 1:1 and then casted between two 
plastic petri dishes with 1-mm spacer in the middle. The surface of 
each petri dish was coated with a release agent (Smooth-On) before 
casting. After curing under room temperature for 4 hours, the sili-
cone film was cut into ring shapes using a laser cutter (Universal 
Laser Systems).

Mechanical and rheological characterizations
Rheological characterization of hydrogel ink (uncross-linked) was 
performed using a TA Instruments DHR-3 rotational rheometer 
with cone (40 mm, 2°) and plate geometry. Viscometry tests were 
performed at shear rates from 10−1 to 102 s−1, and oscillatory rhe-
ometry tests were performed at a frequency of 1 Hz and oscillatory 
stresses from 10−1 to 103 Pa.

Uniaxial tensile tests were performed on porcine lung tissue spec-
imens, 3D-printed hydrogel specimens, and casted silicone specimens 
using a TA Instruments RSA-G2 extensional dimethylamine (DMA) 
rheometer. The tissue specimens were cut into rectangular shapes 
and tested within 12 hours after the lung tissue was taken from the 
animal. Before testing, the tissue specimens were stored in saline 
solution in the refrigerator. Static stress-strain curves were acquired 
for each material at a strain rate of 0.1 mm/s. Oscillatory tensile tests 
with strain sweep were conducted at strains from 1 to 5% and at 
frequencies of 0.2 and 0.3 Hz. Oscillatory tensile tests with frequency 
sweep were conducted at frequencies from 0.2 to 2 Hz and at strains 
of 2 and 5%.

EIT system configuration
Switching of electrodes for current sourcing and voltage measure-
ment was controlled using CD74HC4067 multiplexers. Alternating 

current with a frequency of 20 kHz and amplitude of 0.8 mA was 
supplied to the EIT sensor by a Howland Current Pump consisting 
of an LT6375 amplifier and a RIGOL DG1022 waveform generator. 
The voltage measurements from the electrode pairs were amplified 
74× using an INA 128 amplifier. To dampen ambient electromagnetic 
interference such as fluorescent light ballasts (e.g., 50 kHz) and 
power line noise (e.g., 60 Hz), the amplified signal was filtered by a 
low pass filter with a cutoff frequency at 31.2 kHz, followed by a 
high pass filter with a cutoff frequency at 4.8 kHz. The filtered signal 
was eventually biased by 1.65 V (INA 111AP) and amplified by five 
times (INA 128) before it was fed to the 12-bit ADC (analog-to-digital 
converter) input port of the microcontroller.

The microcontroller was programmed to acquire 40 voltage mea-
surements (adjacent stimulation and measurement patterns in the 
eight-electrode configuration) for each update of EIT estimation. For 
each voltage measurement, the ADC module collected 100 samples 
of voltage signal at a frequency of 400 kHz (covering approximately 
five periods of the 20 kHz AC signal) for a root-mean-square estima-
tion of the voltage amplitude, followed by a wait period of 10 ms 
before configuring for the next voltage measurement.

We developed the deformation estimation software based on the 
EIDORS toolkit in MATLAB. Specifically, a one-step Gauss-Newton 
inverse model with a NOSER prior was adopted for reconstruction 
of conductivity distribution. The hyperparameter and background 
value for the inverse model was set on the basis of the measured 
conductivity of the hydrogel (inferred from the prior EIT data of the 
undeformed hydrogel sensor).

EIT strain sensor characterization
The test bed for the EIT sensor characterization consists of a rigid 
frame (3D printed with polylactic acid), a rubber membrane layer 
(McMaster-Carr) with its boundary fixed to the frame, as well as a 
balloon beneath the rubber membrane and connected to the digital 
pneumatic regulator (Nordson EFD). A hydrogel EIT sensor was 
attached to the rubber membrane via silicone adhesive (Loctite). 
Fifty-six paper markers in black were attached to the top surface of 
the EIT sensor. We used a 3D scanner to register the 3D positions of 
marker centers, which were configured as nodes in the computational 
model to construct a triangular surface mesh on the EIT sensor. The 
ground truth 2D volumetric strain within each triangular mesh ele-
ment was approximated by computing the area expansion ratio of 
the triangular region.

Direct writing on a porcine lung
The hydrogel ink was printed on the porcine lung with a printing 
speed of 6 mm/s, an extrusion pressure of 200 kPa, an extrusion noz-
zle with inner diameter of 0.61 mm, and a 1-mm gap between the 
extrusion nozzle and lung surface. The maximum traversing speed 
of the 3D printer was set to be 500 mm/s for each moving axis. The 
digital pneumatic regulator that controlled lung deformation was 
configured to output 24-kPa pressure in the form of a square pulse 
wave, with a pulse width of 80% and a frequency of 0.2 Hz. The central 
control software for real-time tracking of deformation and adaptive 
3D printing was programmed in C++ and run on a desktop with 
3.5 GHz Intel Xeon E5 processor and 16 GB RAM.

Direct writing on a phantom face
The test bed for the deformable phantom face consists of a rigid frame 
(3D printed with polylactic acid), a casted silicone phantom face model 
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with its boundary fixed to the frame, as well as a balloon beneath the 
rubber membrane and connected to the digital pneumatic regulator 
(Nordson EFD). The casted silicone material was prepared by adding 
3 wt % of white pigments (Silc Pig, Smooth-On) to the mixture of 
parts A and B of Ecoflex 00-30 (Smooth-On) at a ratio of 1:1. The 
casted structure was cured under room temperature for 4 hours be-
fore release from the mold.

The colored silicone inks were prepared by first mixing parts A 
and B of Ecoflex 00-30 (Smooth-On) with a ratio of 1:1, and then 
adding 3 wt % of thickener (THI-VEX, Smooth-On) and 3 wt % of 
blue, red, green, and yellow pigments (Silc Pig, Smooth-On) to form 
3D-printable, multicolored silicone inks. The inks were thoroughly 
mixed in a planetary centrifugal mixer (Thinky ARM-310) before 
being loaded into the printing syringe. The printed features on the 
phantom face were cured under room temperature for 4 hours.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/25/eaba5575/DC1
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