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Fig. 2. Mean AC for unadjusted, weighted, and matched populations. Mean AC was smaller than 0.1 using causal inference GPS methods (matching and weighting). 
AC values of <0.1 indicate good covariate balance, strengthening the interpretability and validity of our analyses as providing evidence of causality. BMI, body mass index.

Fig. 3. HR and 95% CIs. The estimated HRs were obtained under five different statistical approaches (two traditional approaches and three causal inference approaches). 
HRs were adjusted by 10 potential confounders, four meteorological variables, geographic region, and year.
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Both traditional and causal inference approaches rely on assump-
tions. Unless all assumptions are satisfied, regardless of approach, 
recovery of causal effects is not guaranteed. A critical assumption that 
guarantees our conclusion’s validity is that our statistical analyses 
account for all confounders. This assumption must always be made 
in observational studies. We included several publicly available 
individual- and area-level potential confounders. To mitigate un-
measured confounding bias, we assessed the results’ sensitivity by 
including year as a surrogate for some unmeasured confounders that 
might have covaried over time with PM2.5 and mortality and, thus, 
confound their association. Even after adjustment for year, the analy-
sis could be affected by confounding bias by unmeasured factors; 
therefore, we conducted further sensitivity analyses to unmeasured 
confounding by calculating the E-value and showed that our results 
are robust to unmeasured confounding bias.

Dominici and Zigler (12) previously discussed three notions of 
what constitutes evidence of causality in air pollution epidemiology. 
The first is causality inferred from evidence of biological plausibility 
(13). The second is consistency of results across many epidemiological 
studies and adherence to Bradford Hill causal criteria (14). The third 
is the use of causal inference methods that are more robust to model 
misspecification compared to traditional approaches and, when 
assumptions are met, can isolate causal relationships. More specifi-
cally, the causal inference approaches considered in this work re-
quire the estimation of GPS as the first step. Assuming all causal 
inference assumptions hold, these approaches are more robust to 
outcome model misspecification and allow for the transparent eval-
uation of covariate balance. However, note that if the models are 
accurately specified and all assumptions are met, then the traditional 
approaches have the potential to inform causal relationship as well. 
In particular, we found that a more flexible regression model specifi-
cation may help adequately adjust for confounding; when implement-
ing these flexible models, we observed similar results compared to 
the causal inference approaches.

This work estimates the causal relationship using causal inference 
methods, addressing just one of Dominici and Zigler’s three notions 
of what constitutes scientific evidence of causality. The collective 
evidence across studies conducted in different populations, using 
different study designs and methods, is also imperative to inform 
regulatory action. A recent meta-analysis found robust evidence for 
an effect on mortality across 52 cohort studies at PM2.5 levels below 
10 g/m3 (15).

Exposure to PM2.5 was estimated from a prediction model, which, 
while very good, is not perfect. The PM2.5 exposure prediction model 
developed by Di et al. (9) that was used in this analysis indicated 
excellent model performance, with a 10-fold cross-validated R2 of 
0.89 for annual PM2.5 predictions. However, exposure error could 
have affected all HR estimates. In the original study by Di et al. (3), 
the authors assessed the robustness of the results to the exposure 
predictions by repeating the analysis based on PM2.5 exposure data 
obtained from 1928 EPA ambient monitors. The additional analysis 
was restricted to the subpopulation of individuals within 50 km of 
these monitors. While this subset does not represent the entire pop-
ulation, we found that the analysis based on nearest monitoring site 
led to an HR estimate that was only slightly lower than the one 
obtained using the exposure prediction model [i.e., 1.061 (95% CI, 
1.059 to 1.063) versus 1.073 (95% CI, 1.071 to 1.075)]. Although these 
results are reassuring, we recognize that they are not a substitute to 
a formal analysis that accounts for exposure error.

Accounting for exposure measurement error under a causal in-
ference framework using propensity scores is complex, as the expo-
sure error will affect not only the estimation of the health effects but 
also the estimation of the propensity score and its implementation 
to adjust for measured confounders (16). Regression calibration is a 
common method for measurement error correction (17). Wu et al. 
(18) proposed a regression calibration approach for GPS analysis 
under categorical exposures. The proposed approach was applied 
in the context of long-term PM2.5 exposure and mortality using the 
Medicare data in the Northeastern United States. When accounting 
for exposure error, there was a higher and still statistically signifi-
cant association between exposure to PM2.5 and mortality, although 
with larger CIs. How to propagate exposure error under a causal 
inference framework for a continuous exposure is still an area of 
active research; the presence of exposure measurement error could 
induce a bias toward the null in all of our estimates (19).

The model parameterization assumes that zip code–specific 
information is spatially independent, given covariates. Since we 
adjusted for numerous zip code–level predictors of mortality, in-
cluding SES and meteorological variables, this assumption is likely 
to hold. If any residual spatial dependence remains under certain 
assumptions (e.g., those used in generalized estimating equations), 
then it would not have affected our point estimates but could have 
influenced the estimated SEs. However, our bootstrapping procedure 
partially accounts for this possibility. By randomly sampling zip codes 
for each bootstrap replicate, we were able to break down spatial 
dependence given covariates. Therefore, it is unlikely that our results 
are affected by spatial correlation.

Our study is based on publicly available data sources and have 
made all code developed for our analyses publicly available. Our 
approach maximizes reproducibility and transparency. We provide 
robust evidence that the current U.S. standards for PM2.5 concen-
trations are not protective enough and should be lowered to ensure 
that vulnerable populations, such as the elderly, are safe.

Our results raise awareness of the continued importance of as-
sessing the impact of air pollution exposure on mortality. There are 
currently numerous disputes regarding the evidence from previous 
air pollution epidemiologic studies, with arguments made for only 
using causal inference methods or only including studies that 
make participants’ information publicly available. We oppose these 
very strongly. Most epidemiological studies must rely on confidential 
patient data to provide evidence on adverse health effects of envi-
ronmental exposures on outcomes and also focus on populations 
that cannot be studied using administrative data. We hope this work 
will help researchers and policy makers, particularly as revision dis-
cussions of national PM2.5 standards are underway.

MATERIALS AND METHODS
Study population
Our study population is composed of more than 68.5 million Medicare 
enrollees (≥65 years of age) between 2000 and 2016. Medicare claims 
data, obtained from the Centers for Medicare and Medicaid Services 
(8), are an open cohort, including demographic information such as 
age, sex, race/ethnicity, date of death, and residential zip code. A 
unique patient ID is assigned to each person to allow for tracking 
over time. Medicare enrollees entered our cohort in 2000 if enrolled 
before 2000, or upon their enrollment after 2000. After enrollment, 
each individual was followed annually until the year of their death 
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or the end of our study period (31 December 2016). This study was 
conducted under a protocol approved by the Harvard T.H. Chan 
School of Public Health Human Subjects Committee.

Exposure assessment
We estimated daily PM2.5 levels at a high spatiotemporal resolution 
using a 1-km2 grid network across the contiguous United States and 
a well-validated ensemble-based prediction model (9). This model 
used ensemble learning approaches to combining three machine 
learning models: a random forest regression, a gradient boosting 
machine, and an artificial neural network (20–22). These machine 
learning algorithms used more than 100 predictor variables from 
satellite data, land-use information, weather variables, and output 
from chemical transport model simulations. The ensemble-based 
model was trained on daily PM2.5 concentrations measured at 2156 
U.S. EPA monitoring sites, with an average cross-validated R2 of 
0.86 for daily PM2.5 predictions and 0.89 for annual predictions, 
indicating excellent performance that was improved compared to 
previously developed models (23, 24).

Residential addresses are not available for Medicare enrollees, 
only residential zip codes. For each standard zip code, we used 
zonal statistics to calculate the daily average PM2.5 concentration 
based on all 1-km2 grid cell predictions within the zip code via ag-
gregations. More specifically, we first overlaid the zip code bound-
aries to the 1-km2 grid cells and then averaged the predictions at 
1-km2 grid cells whose centroids fall within the boundary of that 
zip code (25). For P.O. Box–only zip codes, the average PM2.5 con-
centrations were calculated by linking to the predictions from the 
nearest 1-km2 grid cell. Annual zip code averages were estimated 
by averaging the daily concentrations. We assigned the annual esti-
mated zip code average PM2.5 concentration to individuals who 
resided in that zip code for each calendar year.

Potential confounders
The stratification by individual-level characteristics also adjusted 
for potential confounding by these variables. Furthermore, to adjust 
for confounding bias by community-level factors, we used informa-
tion about multiple zip code–level SES variables collected from 
the U.S. Census, ACS, and BRFSS. All data [including census data, 
which are reported for Zip Code Tabulation Area (ZCTA)] were 
mapped to postal zip codes. Specifically, we included (i) two county-
level variables: average body mass index and smoking rate; (ii) 
eight zip code–level census variables: proportion of Hispanic res-
idents, proportion of Black residents, median household income, 
median home value, proportion of residents in poverty, proportion 
of residents with a high school diploma, population density, and 
proportion of residents that own their house; and (iii) four zip 
code–level meteorological variables: the summer (June to September) 
and winter (December to February) averages of maximum daily 
temperatures and relative humidity. We obtained zip code–level 
meteorological variables using area-weighted aggregations based 
on daily temperature and humidity data on 4-km2 gridded rasters 
from Gridmet via Google Earth Engine (26, 27). We also considered 
two indicator variables indicating (i) the four census geographic 
regions of the United States (Northeast, South, Midwest, and West) 
and (ii) calendar years (2000–2016) to adjust for some residual 
or unmeasured spatial and temporal confounding, respectively. The 
data used for this study are publicly available and sources are listed 
in table S1.

Data linkage
Outcome data were available at the postal zip code level, at which 
we also assigned annual PM2.5 exposures. Outcome and exposure 
information were available for 35,924 zip codes. We then mapped 
potential confounders at ZCTA to postal zip codes to link the 
outcome and exposure data to potential confounders obtained from 
the U.S. Census, ACS, and the BRFSS. The total number of zip 
codes included in our main analysis with information about all 
outcome, exposure, and confounder data was 31,337. See section S2 
for more details.

Statistical analysis
For all models, we performed stratified outcome model analysis by 
four individual-level characteristics: (i) a 5-year category of age at 
entry (65 to 69, 70 to 74, 75 to 79, 80 to 84, 85 to 89, 90 to 94, 95 to 
99, and above 100 years of age), (ii) race/ethnicity (White, Black, 
Asian, Hispanic, Native American, and other), (iii) sex (male or 
female), and (iv) an indicator variable for Medicaid eligibility (a 
surrogate for individual-level SES).

We fit five different statistical models to estimate the causal re-
lationship between long-term PM2.5 exposure and our outcome of 
interest, all-cause mortality among the elderly. Below, we describe 
the five approaches; details on the statistical methods and assump-
tions are provided in section S1.
Cox proportional hazard approach
We fit stratified Cox proportional hazards models using annual PM2.5 
as the time-varying exposure and stratifying by four individual-
level characteristics. In our main analysis, we adjusted for 14 zip 
code– or county-level time-varying covariates, as well as a dummy 
region variable and dummy calendar year variable. The Cox pro-
portional hazards survival model is specified as Survival(follow-up 
year, death) ~ PM2.5 + area-level risk factors + meteorological 
variables + dummy year + dummy region + strata(age, race, gender, 
Medicaid eligibility).
Poisson regression approach
We fit the Poisson regression model, using annual PM2.5 as the 
time-varying exposure; the count of deaths at the given follow-up 
year, calendar year, and zip code as the outcome and the corre-
sponding total person-time as the offset term. To adjust for potential 
confounding, we included the same 14 zip code– or county-level 
time-varying covariates, as well as a dummy region variable and 
dummy calendar year variable, as those included in the Cox pro-
portional hazards models. We used a stratified Poisson regression 
model formulation to account for the strata-specific baseline risk 
rates by stratifying on individual-level characteristics. The Poisson 
regression model is specified as log(Ε[death counts]) ~ PM2.5 + 
area-level risk factors + meteorological variables + dummy year + 
dummy region + strata(age, race, gender, Medicaid eligibility, 
follow-up year) + offset(log[person year]).
Causal inference approaches
GPS estimation. The three proposed causal inference approaches 
required the estimation of GPS as the first step. In our study, we 
modeled the conditional density of exposure (i.e., annual average 
PM2.5) on the 14 zip code– or county-level time-varying covariates, 
as well as a dummy region variable and dummy calendar year variable, 
using gradient boosting machine with normal residuals (28, 29). 
The gradient boosting machine model is specified as PM2.5 ~ area-
level risk factors + meteorological variables + dummy year + dummy 
region + , where  ~ N(0, 2).
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GPS matching approach. We constructed the matched pseudo-
population as described in section S1. We first checked the covariate 
balance in the matched pseudo-population, and if covariate balance 
was achieved (average AC, <0.1), then we fit a univariate Poisson 
regression model regressing the death counts with an offset person-
time term, on the exposure PM2.5, stratifying by four individual-level 
characteristics and the same follow-up year. The Poisson regression 
model is specified as log(E[death counts]) ~ PM2.5 + strata(age, race, 
gender, Medicaid eligibility, follow-up year) + offset(log[person year]), 
on the matched pseudo-population. Additional details on the match-
ing procedure can be found in section S1.

GPS weighting approach. We constructed the weighted pseudo-
population as described in section S1. We first checked the covariate 
balance on the weighted pseudo-population, and if covariate balance 
was achieved (average AC, <0.1), then we fit a weighted univariate 
Poisson regression model regressing the death count with offset term 
the person-time on PM2.5 exposure incorporating the assigned weights 
and stratifying by the four individual-level characteristics and the 
same follow-up year. The Poisson regression model is specified as 
log(E[death counts]) ~ PM2.5 + strata(age, race, gender, Medicaid 
eligibility, follow-up year) + offset(log[person year]), weights = f(PM2.5)/
GPS, where f(PM2.5) is the marginal density function of exposure PM2.5, 
which serves as a stabilizing term (30).

GPS adjustment approach. We modeled the conditional expectation 
of the death counts given the exposure and the estimated GPS as a 
stratified Poisson regression with flexible formulation of bivariate 
variables, with the corresponding person-time offset. The Poisson 
regression model was specified as log(E[death counts]) ~ PM2.5 + 
PM2.5 × GPS + GPS + GPS2 + strata(age, race, gender, Medicaid eli-
gibility, follow-up year) + offset(log[person year]). In contrast to the 
GPS matching/weighting approaches, where the analysis is complete 
after fitting the Poisson regression model, for the GPS adjustment 
approach, the coefficients from the Poisson regression model do 
not provide any causal interpretation; instead, the causal outcome 
analysis is conducted on the counterfactuals predicted by the Poisson 
model (31). We fit a univariate linear regression model regressing 
the counterfactual mean hazard rates for each PM2.5 level, stratify-
ing by four individual-level characteristics and the same follow-up 
year. The outcome linear regression model is specified as E(hazard 
rates) ~ PM2.5 + strata(age, race, gender, Medicaid eligibility, follow-
up year). Additional details are provided in section S1.
Total events avoided
We estimated the total number of deaths that would be avoided 
among the elderly per decade if all areas were in compliance with 
the current WHO guidelines (annual PM2.5 exposure, ≤10 g/m3) 
(32). Nethery et al. (33) defined and identified a causal quantity 
named the total events avoided (TEA) under causal assumptions 
1 to 3 (see section S1), defined as the difference in the expected 
number of health events under the counter-factual pollution expo-
sures and the observed number of health events under the factual 
pollution exposures. Such a causal quantity is particularly related to 
the health policy that intends to answer the question “How many 
deaths were avoided in the Medicare population per decade due to 
the U.S. National Ambient Air Quality Standards (NAAQS) changes 
in particulate matter (PM2.5) in the same time?”

We created the counterfactual PM2.5 exposures if all zip codes in 
the continental United States complied with the current WHO guide-
lines (annual PM2.5, ≤10 g/m3). For zip codes that did not comply 
with the standard until 2016, their counterfactual was assumed to 

be exposure exactly at this hypothesized standard (10 g/m3). This 
is a conservative estimate, as it answers the question of TEA if these 
zip codes were exactly at 10 g/m3 and not lower than this concen-
tration. For zip codes already in compliance, we assumed that their 
concentration was unchanged, which otherwise would result in even 
higher TEA.

We compared this counterfactual scenario to the factual scenarios 
during the most recent decade (2007–2016). For zip codes with an 
annual PM2.5 concentration of >12 g/m3, the numbers for the TEA 
were obtained using the most conservative HR from our main analy-
sis [HR, 1.06 (95% CI, 1.05 to 1.08); see table S3]. For zip codes with 
an annual PM2.5 concentration of 10 to 12 g/m3, the numbers for 
the TEA were obtained using the most conservative HR from our 
low-level analysis [HR, 1.23 (95% CI, 1.18 to 1.28)]. Zip codes with 
an annual PM2.5 concentration of <10 g/m3 did not contribute 
to the TEA. For the CI calculation, we used the lower and upper 
bounds of the 95% CIs from the HR estimates (which were obtained 
by bootstrap).
Evaluation of unmeasured confounding
We conducted a sensitivity analysis to evaluate the robustness of our 
results to unmeasured confounding by calculating the E-value. The 
E-value for the point estimate of interest (in our case, the HR) can 
be defined as the minimal strength of an association, on the risk ratio 
scale, that an unmeasured confounder would need to have with both 
the exposure and outcome, conditional on the covariates already 
included in the model, to fully explain the observed association un-
der the null. We calculated the E-value for our reported HRs per 
increase (10 g/m3) of long-term exposure to PM2.5. The calculation 
of E-value can be implemented through the E-value calculator by 
Mathur et al. (11), available at https://www.evalue-calculator.com/.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/29/eaba5692/DC1

View/request a protocol for this paper from Bio-protocol.
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