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respectively, aligning the inferior-superior axis in macroscale organi-
zation of thickness with the dual origin theory. This convergence 
supports the view that regions that can be reasonably distant in 
space can be functionally affiliated because they share similar or-
igins (3,  34,  41). The emergence of the dual connectional trends 
might be rooted in two patterning centers in the developing palli-
um, resulting in two opposing neurogenetic gradients. Both ventral 
and dorsal systems have been proposed to relate to differentiable 
functional processes. Whereas the dorsal system has been proposed 

to relate to time, space, and motility, the ventral system has been 
associated with assigning meaning and motivation (43, 44). Our 
analysis only provides correlational evidence of a dual origin 
schema within cortical macrostructure using distance from archi- 
and paleocortical formations as a proxy. We hope that the obser-
vations reported here will spark further investigation of a dual 
origin in cortical architecture across imaging modalities and cor-
tical features, as well as its relation to cortical development and 
ageing.

Fig. 4. Cross-species topology of covariance as a function of the dual origin theory. (A) Left: distance from archicortex and paleocortex in humans. Middle: 
genetic correlation as a function of archi- and paleocortex distance (10 bins). Right: Association between G1 and G2 of genetic correlation of thickness and distance from 
archicortex and paleocortex in humans (both gradients binned in two bins and linear relationship between gradient and distance). (B) Left: Distance from archicortex and 
paleocortex in macaque monkeys (34). Middle: structural covariance as a function of archi- and paleocortex distance (10 bins) (34). Right: Association between G1 and G2 
of thickness covariance and distance from archicortex and paleocortex in macaque monkeys (both gradients binned in two bins, as well as linear relationship between 
gradient and distance). (C) Left: Sensory-fugal maps of laminar differentiation (77). Middle: Genetic correlation as a function of laminar module. Right: Gradients versus 
laminal module.
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We observed differential ordering of posterior-anterior and 
inferior-superior gradients in humans and macaques. Whereas in 
humans, the principal gradient traversed a posterior-anterior trajectory, 
we observed that in macaques, this gradient was only the second 
description of shared variance. This difference might reflect the dif-
ference in the timing of cortical development between humans and 
macaques. For example, it has been shown that in the macaque 
neurogenesis ends about 20 days earlier in the rostral pole than in 
the most caudal regions (45); in humans, however, a posterior-anterior 
difference of up to 70 days has been predicted (37). It is possible 
that difference in timing of neurogenesis might describe why the 
same axis of organization can be more or less pronounced in differ-
ent species. Previous work, using the same sample of macaques, 
has shown that similarity in functional cortical organization be-
tween humans and macaques decreases with geodesic distance from 
unimodal systems and culminates in the greater differences in pos-
terior regions of the default network (33). It is possible this func-
tional difference emerges from the different balance of the structural 
organizational patterns between macaques and humans. It has been 
suggested that the evolution of the shape of the human brain is 
related to genes involved in neurogenesis and myelination (46), re-
sulting in a relatively globular shape of the brain of modern humans 
relative to their ancestors. It will be important for future work to ex-
plore whether differences in the emphasis placed on similar or-
ganizational patterns across different species can describe the 
evolutionary differences in cognitive functions between humans 
and other primates.

Follow-up analysis indicated the posterior-anterior and inferior-
superior gradients related to cortical myelination and previously 
described organization of microstructural profile covariance (27). 
The posterior-anterior gradient related to T1wT2w contrast in all 
layers. This is in line with seminal evidence of an increase of mean 
myelin from fronto-polar toward sensory regions (47). The dorsal-
ventral dissociation was only observed in the upper two strata, with 
ventral regions relating to lower T1wT2 contrast than dorsal regions. 
Difference in upper and lower strata T1wT2w contrast has been 
summarized using “skewness,” indicating that regions with high 
difference between upper and lower layers would have a low skew-
ness, whereas regions with a small difference between upper and 
lower layers having a high skewness (48). Dorsal regions including 
the sensory-motor cortex have been reported to have a low skewness, 
indicating a large difference in myelin between upper and lower 
layers. It is possible that the dorsal-ventral patterning of myelin in 
the upper layers reflects a dissociation in information processing, 
with sensory agranular regions providing feedforward information 
and project locally, whereas ventral, more granular paralimbic, 
regions are involved in feedback processing and project from infra-
granular layers (49). In addition, we found comparable topologies 
in microstructural profile covariance and macroscale organization 
of thickness, in line with previous evidence that thickness topology 
relates to microstructural differentiation (11).

Similar to previous work (13), we observed a correspondence 
between organization of structural covariance and geodesic distance. 
Previous research has indicated that interregional associations, in-
cluding shared genetic influences, structural covariance, and func-
tional and structural connectivity measures, are more pronounced 
at short relative to long interregional distances (13, 19). Such a 
distance effect is consistent with the prediction that evolutionary 
pressure decreases distances between highly connected brain areas 

to reduce metabolic and wiring costs (50). The spatial constraints 
on connectivity might relate to signaling molecules, secreted by 
patterning centers, which generate a graded expression of transcrip-
tion factors in cortical progenitors (51), regulating the position of 
cortical areas. At the same time, when regressing out distance be-
fore assessing the organizational principles underlying structural 
covariance, we observed patterning that still reflected functional 
and dual organization, and this time axis followed patterns with 
in the one hand a juxtaposition of paralimbic areas to heteromodal 
association cortices, and, on the other hand, a pronounced sensory-
fugal trajectory in the second gradient. In addition, other factors 
shape the organization of brain function and structure such as contra-
lateral homologies and clustering of connections that share inputs 
(13, 52). Overall, our observations suggest that both distance-related 
and nondistance-related factors influence the topology of large-scale 
cortical brain structure, aligning with notions of cortical expansion 
(33), functional hierarchy (6), and the dual origin theory (2). At the 
same time, associations between spatial distance and connectivity 
might be enhanced by motion, smoothing, and measurement error 
(53, 54). Although our analysis suggests that the observed effects go 
above and beyond such confounds, further research formally com-
bining multiple modalities and creating mathematical null models 
randomly capturing topological elements observed in covariance net-
works (55) might help to further decompose the association between 
geometry and topology of the cortical mantle.

The current work provides a macroscale perspective on the 
genetic basis of cortical organization by investigating cortical thick-
ness covariance, a widely used, macroscale measure reflecting neu-
ronal density and cytoarchitecture. Cortical structure is defined by 
not only its thickness but also surface area and gyrification. Future 
research on the spatial organization of cortical structure might be 
complemented by models combining multiple cortical features 
such as cortical thickness, surface area, and folding (56, 57). While 
implications of our findings in healthy adults to diseased and older 
populations remain speculative, our work may offer a novel and com-
pelling model to evaluate the impact and progression of pathology. 
For example, it has been suggested that Parkinson’s and Alzheimer’s 
disease follows a staging trajectory, with different regions and 
networks affected at different stages of the disorder (8), and its 
sequence might be determined by underlying anatomical axes. 
Future work should, therefore, consider whether the macroscale 
patterns such as those described in our work may shed light on specific 
orderly sequences in symptoms that underpins Parkinson’s disease, 
as well as other neurodegenerative conditions. These analyses will 
not only inform our understanding of the progression of the specific 
diseases but also provide a model to arrange abnormal features of 
neurocognitive organization.

To conclude, our results establish two major axes in macroscale 
organization of cortical thickness in human and nonhuman pri-
mates and suggests genetic effects on both. We found a principal 
gradient stretched from posterior to anterior cortical areas, whereas 
a second gradient traversed along an inferior-superior axis and 
aligned with theories on the dual origin of the cortex. Combined, 
our observations provide direct evidence of a genetic basis behind 
macroscale patterns of brain structure. Note that our findings were 
made possible thanks to open data initiatives. These initiatives of-
fer the neuroscience community unprecedented access to large 
datasets for the investigation of human and nonhuman brains 
and for the cross-validation of observations across datasets and 
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methods. Uncovering organizational axes of the human cerebral cor-
tex provides insights the developmental-maturational and evolu-
tionary patterns underlying cortical structure. Such axes can be 
used to study brain-behavior relationships, evaluate disease pro-
gression, and disseminate potential neurogenetic origins of abnor-
mal cortical development.

MATERIALS AND METHODS
HCP sample
Participants and study design
For our analysis, we used the publicly available data from the HCP 
S1200 release (www.humanconnectome.org/), which comprised data 
from 1206 individuals (656 females), 298 monozychotic (MZ) twins, 
188 dizychotic (DZ) twins, and 720 singletons, with a mean age of 
28.8 years (SD, 3.7; range, 22 to 37). We included individuals for 
whom the scans and data had been released (humanconnectome.org) 
after passing the HCP quality control and assurance standards. The 
full set of inclusion and exclusion criteria are described elsewhere 
(58, 59). In short, the primary participant pool comes from healthy 
individuals born in Missouri to families that include twins based 
on data from the Missouri Department of Health and Senior Ser-
vices Bureau of Vital Records. Additional recruiting efforts were 
used to ensure that participants broadly reflect ethnic and racial 
composition of the U.S. population. Healthy is broadly defined to 
gain a sample generally representative of the population at large. 
Sibships with individuals having severe neurodevelopmental disor-
ders (e.g., autism), documented neuropsychiatric disorders (e.g., 
schizophrenia or depression), or neurologic disorders (e.g., Parkinson’s 
disease) are excluded, as well as individuals with diabetes or high 
blood pressure. Twins born before 34 weeks of gestation and 
nontwins born before 37 weeks of gestation are excluded as well. 
After removing individuals with missing structural imaging data, 
our sample consisted of 1113 (606 females) individuals (including 
286 MZ twins and 170 DZ twins) with a mean age of 28.8 years 
(SD, 3.7; range, 22 to 37).
Structural imaging processing
Magnetic resonance imaging (MRI) protocols of the HCP are previ-
ously described (58, 59). In short, MRI data used in the study were 
acquired on the HCP’s custom 3T Siemens Skyra equipped with a 
32-channel head coil. Two T1w images with identical parameters 
were acquired using a three-dimensional magnetization-prepared 
rapid gradient-echo (3D MP-RAGE) sequence (0.7-mm isotropic 
voxels; matrix, 320 × 320; 256 sagittal slices; common MRI setting 
terms. Two T2w images were acquired using a 3D T2-SPACE se-
quence with identical geometry (TR, 3200 ms; TE, 565 ms; variable 
flip angle; iPAT, 2). T1w and T2w scans were acquired on the same 
day. The pipeline used to obtain the FreeSurfer segmentation is de-
scribed in detail in a previous article (58) and is recommended for 
the HCP data. The preprocessing steps included coregistration of 
T1- and T2-weighted scans, B1 (bias field) correction, and segmen-
tation and surface reconstruction using FreeSurfer version 5.3 HCP 
to estimate cortical thickness.

In addition to assess robustness and replicability of the results 
across different surface estimation pipelines, cortical thickness esti-
mates were further estimated using FreeSurfer version 6.0 and 
CIVET (60). For both these additional analyses, only bias-corrected 
T1-weighted data were used as the input. FreeSurfer version 6.0 was 
performed using the default recon-all options. Surface-extraction 

and cortical thickness estimation using CIVET were performed using 
version 2.1.1 (www.bic.mni.mcgill.ca/ServicesSoftware/CIVET). The 
nonuniformity artefacts were corrected with the N3 algorithm using 
the recommended N3 spline distance of 125 mm for 3T T1-weighted 
scans. Cortical thickness was then measured as the distance between 
the estimated “white” and “gray” cortical surfaces, in the native 
space framework of the original MR images, using the same ap-
proach that is used in FreeSurfer.
Parcellation approach
We used the Schaefer parcellation scheme (25) on the basis of the 
combination of a local gradient approach and a global similarity 
approach using a gradient-weighted Markov Random models. The 
parcellation has been extensively evaluated with regard to stability 
and convergence with histological mapping and alternative parcel-
lations. In the context of the current study, we focus on the granu-
larity of 400 parcels, as averaging will improve signal to noise. We 
averaged unsmoothed structural data within each parcel. Thus, 
cortical thickness of each region of interest was estimated as the 
trimmed mean (10% trim). Findings were additionally evaluated 
using different parcellation schemes using the 800 parcel Schaefer 
(25) solution, as well as the Glasser atlas (31) and the Desikan-
Killiany (30) atlas.
Structural covariance
We computed structural covariance by correlating cortical thick-
ness parcels while controlling for age, sex, and global thickness, re-
sulting in a 400 by 400 matrix. Previous work has indicated that 
there is a strong general genetic component influencing cortical 
anatomy (61), and thus, by regressing out global thickness, these 
global genetic effects are reduced. However, the main observations 
remain virtually identical when not controlling for global thickness.
Genetic correlation analysis
To investigate the genetic correlation of brain structure, we ana-
lyzed 400 parcels of cortical thickness in a twin-based genetic cor-
relation analysis. The quantitative genetic analyses were conducted 
using SOLAR (62). SOLAR uses maximum likelihood variance-
decomposition methods to determine the relative importance of 
familial and environmental influences on a phenotype by modeling 
the covariance among family members as a function of genetic 
proximity. We used a G + E model to assess heritability and genetic 
correlation in the HCP dataset on the basis of prior work, indicating 
that G + E is more parsimonious and leads to more reproducible 
results in this sample (63). This approach can handle pedigrees 
of arbitrary size and complexity and thus is optimally efficient with 
regard to extracting maximal genetic information. To ensure that 
our cortical thickness parcels were conforming to the assumptions 
of normality, an inverse normal transformation was applied.

Heritability (h2) represents the portion of the phenotypic variance 
(2

p) accounted for by the total additive genetic variance (2
g), i.e., 

h2 = 2
g/2

p. Phenotypes exhibiting stronger covariances between 
genetically more similar individuals than between genetically less 
similar individuals have higher heritability. Within SOLAR, this is 
assessed by contrasting the observed covariance matrices for a neuro-
imaging measure with the structure of the covariance matrix predicted 
by kinship. Heritability analyses were conducted with simultaneous 
estimation for the effects of covariates. For this study, we included 
covariates including global thickness, age, sex, age2, and age × sex.

To determine whether shared variations in cortical thickness were 
influenced by the same genetic factors, genetic correlation analyses 
were conducted. More formally, bivariate polygenic analyses were 
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performed to estimate genetic (g) and environmental (e) correla-
tions, on the basis of the phenotypic correlation (p), between corti-
cal thickness parcels in the following formula: ​​​ p​​ = ​ ​ g​​ ​√ 

_
 (​​h​​ 2​​ 1​​ ​​h​​ 2​​ 2​​) ​ + ​

​ e​​ ​√ 
_________________

  [(1 − ​​h​​ 2​​ 1​​ ) (1 − ​​h​​ 2​​ 2​​ ) ] ​​, where h2
1 and h2

2 are the heritability of the 
parcel-based cortical thickness. The significance of these correla-
tions was tested by comparing the log likelihood for two restricted 
models (with either g or e constrained to be equal to 0) against the 
log likelihood for the model in which these parameters were esti-
mated. A significant genetic correlation is evidence suggesting that 
(a proportion of) both phenotypes are influenced by a gene or set of 
genes (64). To compute the contribution of genetic effects relative 
to the phenotypic correlation, we computed the contribution of the 
genetic path to the phenotypic correlation ​(​√ 

_
 ​​h​​ 2​​ 1​​ ​ × ​​ g​​ × ​√ 

_
 ​​h​​ 2​​ 2 ​​ ​)​ (phg) 

divided by the phenotypic correlation. For the relative contribution 
of environmental correlation to the phenotypic correlation, we com-
puted ​(​√ 

_
 1 − ​​h​​ 2​​ 1​​ ​ × ​​ e​​ × ​√ 

_
 1 − ​​h​​ 2​​ 2​​ ​)​ (phe) divided by the phenotypic 

correlation (65).
Gradient decomposition
To compute macroscale organizational gradients, we performed 
several analysis steps. The input of the analysis was the structural 
covariance/genetic correlation matrix, which was cut off at 90% 
similar to previous studies (27, 28). To study the relationships 
between cortical regions in terms of their features, we used a nor-
malized angle similarity kernel resulting in a non-negative square 
symmetric affinity matrix. In the following, we used diffusion 
mapping, a nonlinear dimensionality reduction method (29). In 
brief, the algorithm estimates a low-dimensional embedding from a 
high-dimensional affinity matrix. In this space, cortical nodes that 
are strongly interconnected by either many suprathreshold edges or 
few very strong edges are closer together, whereas nodes with little 
or no covariance are farther apart. The name of this approach, 
which belongs to the family of graph Laplacians, derives from the 
equivalence of the Euclidean distance between points in the embedded 
space and the diffusion distance between probability distributions 
centered at those points. It is controlled by a single parameter , 
which controls the influence of the density of sampling points on 
the manifold ( = 0, maximal influence;  = 1, no influence). On the 
basis of the previous work (27, 28), we followed recommendations 
and set  = 0.5, a choice that retains the global relations between data 
points in the embedded space and has been suggested to be relatively 
robust to noise in the covariance matrix. Gradients were mapped 
onto the cortical surface using SurfStat (http://mica-mni.github.io/
surfstat), and we assessed the amount of variance explained.
Functional connectivity
Functional connectivity matrices were based on 1 hour of resting-
state functional MRI (fMRI) data acquired through the HCP (58) and 
made publicly available for download on ConnectomeDB. Functional 
resting-state MRI data underwent HCP’s minimal preprocessing 
(31, 58). Briefly, for each individual, a functional connectivity 
matrix was calculated using the correlation coefficient across four 
minimally preprocessed, spatially normalized, and concatenated to 
four 15-min resting-state fMRI scans and coregistered using MSMAll 
to template HCP 32k_LR surface space (59). 32k_LR surface space 
consists of 32,492 total nodes per hemisphere (59,412 excluding the 
medial wall). Following average time series were extracted in each 
of the 400 cortical parcels (25), and individual functional connectivity 
matrices were computed. The individual functional connectomes 

were generated by averaging preprocessed time series within nodes, 
correlating nodal time series, and converting them to z scores. 
Using the individual time series of individuals with complete data 
in the S1200 sample, we constructed an average functional connec-
tivity matrix of which we derived a principle gradient.
Geodesic distance
Geodesic distance was measured as the length of the shortest path 
between two points (i.e., two surface vertices) running through the cor-
tical mantle using an approach invariant to mesh configuration (66). 
Geodesic distance was computed between each vertex in fsaverage5 
space using the Eucledian vertex coordinates, creating a 20,484 × 20,484 
distance matrix. Only ipsilateral distance was considered. Next, dis-
tances between parcels were computed by taking the average distance 
between both parcels. To assess the association between structural 
covariance and distance in humans and macaques, we computed gradients 
based on the geodesic distance within each cortical hemisphere. Using 
these gradients, we probed genetic correlation of thickness along the 
distance-based gradients. To assess the spatial organization of cova-
riance while controlling for distance, we used a linear regression ap-
proach and regressed the geodesic distance and geodesic distance2 be-
tween parcels from their respective covariance. Next, we computed the 
principal gradients of the distance-regressed covariance and evalu-
ated its relationship to the various models of cortical organization.
Comparisons between gradients and modalities
To make comparisons across gradient and distance maps, we used 
spin tests to control for spatial autocorrelation when possible (55). 
Difference between two distributions was assessed using statistical 
energy test, a nonparametric statistic for two sample comparisons 
(35) (https://github.com/brian-lau/multdist/blob/master/minentest.m), 
and statistical significance was assessed with permutation tests (1000). 
Thus, spin tests are used to assess significances of similarity of con-
tinuous spatial maps that have spatial autocorrelations, whereas sta-
tistical energy tests were used to compare two distributions.

Macaque sample
We used the MRI data from the recently formed non-human 
primate (NHP) data sharing consortium PRIME-DE (http://
fcon_1000.projects.nitrc.org/indi/indiPRIME.html). Three cohorts 
of macaque monkeys were included in the present study (Newcastle 
University, Oxford University, and University of California, Davis).
Oxford data
The full dataset consisted of 20 rhesus macaque monkeys (Macaca 
mulatta) scanned on a 3T scanner with four-channel coil. The data 
were collected while the animals were under anesthesia. Briefly, the 
macaque was sedated with intramuscular injection of ketamine 
(10 mg/kg) combined with either xylazine (0.125 to 0.25 mg/kg) 
or midazolam (0.1 mg/kg) and buprenorphine (0.01 mg/kg). In 
addition, macaques received injections of atropine (0.05 mg/kg, in-
tramuscularly), meloxicam [0.2 mg/kg, intravenously (i.v.)], and 
ranitidine (0.05 mg/kg, i.v.). The anesthesia was maintained with 
isoflurane. The details of scan and anesthesia procedures are de-
scribed in (67) and the PRIME-DE website (http://fcon_1000.
projects.nitrc.org/indi/PRIME/oxford.html). Protocols for animal 
care, MRI, and anesthesia were carried out under authority of 
personal and project licenses in accordance with the UK Animals 
(Scientific Procedures) Act (1986) (67, 68).
UC Davis data
The full dataset consisted of 19 rhesus macaque monkeys (M. mulatta, 
all female; age, 20.38 ± 0.93 years; weight, 9.70 ± 1.58 kg) scanned 
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on a Siemens Skyra 3T with four-channel clamshell coil. All the 
animals were scanned under anesthesia. In brief, the macaques were 
sedated with injection of ketamine (10 mg/kg), dexmedetomidine 
(0.01 mg/kg), and buprenorphine (0.01 mg/kg). The anesthesia was 
maintained with isoflurane at 1 to 2%. The details of the scan and 
anesthesia protocol can be found at http://fcon_1000.projects.nitrc.
org/indi/PRIME/ucdavis.html. The neuroimaging experiments and 
associated procedures were performed at the California National 
Primate Research Center under protocols approved by the Uni-
versity of California, Davis Institutional Animal Care and Use 
Committee (69).
Newcastle data
The full dataset consisted of 14 rhesus macaque monkeys (M. mulatta) 
scanned on a Vertical Bruker 4.7T primate dedicated scanner. We 
restricted our analysis to 10 animals (8 males; age, 8.28 ± 2.33; 
weight, 11.76 ± 3.38) for whom two awake resting-state fMRI scans 
were required. The structural T1-weighted images were acquired 
using MDEFT sequence with resolution of 0.6 mm by 0.6 mm by 
0.6 mm; TE, 6 ms; and TR, 750 ms. All nonhuman animal scans and 
associated procedures were performed at Newcastle University, UK 
and were approved by the Animal Welfare and Ethical Review Body 
at Newcastle University and by the UK Home Office (70).
MRI data processing
The structural processing includes (i) spatial denoising by a nonlocal 
mean filtering operation (71), (ii) brain extraction using advanced 
normalization tools registration with a reference brain mask followed 
by manually editing to fix the incorrect volume (ITK-SNAP, www.
itksnap.org) (72), (iii) tissue segmentation and surface reconstruction 
(FreeSurfer) (73), and (iv) the native white matter and pial surfaces 
were registered to the Yerkes19 macaque surface template (74).
Quality control
We excluded macaque monkeys that showed a hemispheric differ-
ence of more than 0.2 cm [UC Davis (0) Oxford (7), and Newcastle 
(5)] for our final analysis, as gradient models were estimated on the 
basis of covariance of ipsi- and contralateral covariance.
Gradient analysis
First, we constructed a covariance matrix, controlling for dataset site 
and global thickness. Next, we performed gradient analysis analog 
to described in humans.
Alignment of human gradients to macaque gradients
To evaluate the similarity between human and macaque gradients, 
we transformed the human gradient to macaque cortex based on a 
functional alignment techniques recently developed. This method 
leverages advances in representing functional organization in high-
dimensional common space and provides a transformation between 
human and macaque cortices (33).
Archicortex and paleocortex distance
Distance from the archicortex and paleocortex was computed in 
Goulas et al. (34).

Replication sample: eNKI
Participants and study design
To evaluate the cross-sample reproducibility of observations, we 
additionally investigated cortical thickness covariance in the en-
hanced Nathan Kline Institute-Rockland Sample (NKI). The sample 
was made available by the Nathan-Kline Institute (NKY, NY, USA) 
(75). In short, eNKI was designed to yield a community-ascertained, 
life span sample in which age, ethnicity, and socioeconomic status 
are representative of Rockland County, NY, USA. ZIP code–based 

recruitment and enrollments efforts were being used to avoid 
overrepresentation of any portion of the community. Participants 
below 6 years were excluded to balance data losses with scientific 
yield, as well as participants above the age of 85, as chronic illness 
was observed to markedly increase after this age. All approvals 
regarding human subjects’ studies were sought following NKI pro-
cedures. Scans were acquired from the International Neuroimaging 
Data Sharing Initiative (INDI) online database (http://fcon_1000.
projects.nitrc.org/indi/enhanced/studies.html). For our phenotypic 
analyses, we selected individuals with complete cortical thickness 
data. Our sample for phenotypic correlations consisted of 799 (400 
females) individuals with a mean age of 41.1 years (SD, 20.3; 
range, 12 to 85).
Structural imaging processing
The 3D MP-RAGE imaging structural scans were acquired using a 
3.0T Siemens Trio scanner with TR of 2500 ms, TE of 3.5 ms; band-
width of 190 Hz/Px, field of view of 256 mm by 256 mm, flip angle 
of 8°, and voxel size of 1.0 mm by 1.0 mm by 1.0 mm. More details 
on image acquisition are available at http://fcon_1000.projects.nitrc.
org/indi/enhanced/studies.html. All T1 scans were preprocessed using 
the FreeSurfer software library (https://surfer.nmr.mgh.harvard.edu) 
version 6.0.0 (74) to compute cortical thickness. Next, the individual 
cortical thickness and surface area maps were standardized to 
fsaverage5 for further analysis. Segmentations were visually inspected 
for anatomical errors (S.L.V.).

Cortical thickness methodology
Cortical thickness estimates of the individuals of the HCP S1200 
release using differing processing pipelines were computed as part 
of an independent study (60) and resampled to Schaefer 400 parcels. 
We used the extracted thickness values of FreeSurfer 6.0 to evaluate 
the stability of observed covariance organization as a function of 
cortical thickness estimation method. For the FreeSurfer 6.0 analysis 
of the T1-weighted images in the HCP dataset, we used the default 
recon-all options (version 6.0; https://surfer.nmr.mgh.harvard.edu). 
Moreover, cortical thickness estimation using CIVET was performed 
using version 2.1.1 (www.bic.mni.mcgill.ca/ServicesSoftware/CIVET).

Cortical microstructure and microstructural  
covariance networks
We estimated microstructural profile covariance (MPC) using myelin-
sensitive MRI, in line with the previously reported protocol (27), 
in the S900 HCP sample. The myelin-sensitive contrast was T1w/
T2w from the HCP minimal processing pipeline, which uses the T2w 
to correct for inhomogeneities in the T1w image. We generated 
12 equivolumetric surfaces between the outer and inner cortical 
surfaces. The equivolumetric model compensates for cortical fold-
ing by varying the Euclidean distance  between pairs of intra-
cortical surfaces throughout the cortex to preserve the fractional 
volume between surfaces.  was calculated as follows for each sur-
face Eq. 1

	​   = ​   1 ─ ​A​ out​​ − ​A​ in​​ ​ . (− ​A​ in​​ + ​√ 
_______________

   ​A​out​ 
2 ​  + (1 −  ) ​A​in​ 2 ​ ​)​	 (1)

where  represents a fraction of the total volume of the segment 
accounted for by the surface, while Aout and Ain represents the sur-
face area of the outer and inner cortical surfaces, respectively. We 
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systematically sampled T1w/T2w values along 64,984 linked vertices 
from the outer to the inner surface across the whole cortex. Subse-
quently, we computed the average value of T1w/T2 in each of the 
400 parcels of the Schaefer atlas (25). In turn, MPCMRI(i, j) for a 
given pair of parcels i and j is defined in Eq. 2

	​​ MPC​ MRI​​ (i, j ) = ​ 1 ─ n ​ ​​s=1​ 
n
  ​ ​​

(
​​ ​ 

​r​ ij​​ − ​r​ ic​​ ​r​ jc​​ ─  
​√ 

_____________
  (1 − ​r​ic​ 

2 ​ ) (1 − ​r​jc​ 2 ​) ​
 ​​
)

​​​ 
s

​​​	 (2)

where s is a participant and n is the number of participants. We used 
the MPCMRI to compute the gradient of microstructure.

Data availability
This study followed the institutional review board guidelines of cor-
responding institutions. All human data analyzed in this manuscript 
were obtained from the open-access HCP young adult sample (HCP; 
www.humanconnectome.org/) (59) and eNKI (www.ncbi.nlm.nih.
gov/pmc/articles/PMC3472598/) (75). Scans were acquired from 
the INDI online database (http://fcon_1000.projects.nitrc.org/indi/
enhanced/studies.html). The raw data may not be shared by third 
parties due to ethics requirements but can be downloaded directly via 
the above web links. Macaque data were obtained from the recently 
formed NHP data sharing consortium PRIME-DE (http://fcon_1000.
projects.nitrc.org/indi/indiPRIME.html). Three cohorts of macaque 
monkeys were included in the present study (Newcastle University, 
Oxford University, and University of California, Davis). Genetic 
analyses were performed using Solar Eclipse 8.4.0 (www.solar-eclipse-
genetics.org), and data on the KING pedigree analysis are available 
at https://www.nitrc.org/projects/se_linux/ (62, 76). Gradient map-
ping analyses were based on open-access tools (BrainMap, https://
brainspace.readthedocs.io/en/latest/). Surface-wide statistical com-
parisons and visualizations were carried out using SurfStat (https://
github.com/MICA-MNI/micaopen/tree/master/surfstat) in combi-
nation with ColorBrewer (https://github.com/scottclowe/cbrewer2). 
Both structural covariance and genetic correlation gradients are avail-
able at https://github.com/sofievalk/projects/tree/master/Structure_
of_Structure.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/39/eabb3417/DC1

View/request a protocol for this paper from Bio-protocol.
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