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G E N E T I C S

Extrinsic noise prevents the independent tuning 
of gene expression noise and protein mean  
abundance in bacteria
A. Deloupy1*, V. Sauveplane2*, J. Robert1, S. Aymerich2, M. Jules2†, L. Robert1,2†

It is generally accepted that prokaryotes can tune gene expression noise independently of protein mean abundance 
by varying the relative levels of transcription and translation. Here, we address this question quantitatively, using 
a custom-made library of 40 Bacillus subtilis strains expressing a fluorescent protein under the control of different 
transcription and translation control elements. We quantify noise and mean protein abundance by fluorescence 
microscopy and show that for most of the natural transcription range of B. subtilis, expression noise is equally 
sensitive to variations in the transcription or translation rate because of the prevalence of extrinsic noise. In 
agreement, analysis of whole-genome transcriptomic and proteomic datasets suggests that noise optimization 
through transcription and translation tuning during evolution may only occur in a regime of weak transcription. 
Therefore, independent control of mean abundance and noise can rarely be achieved, which has strong implica-
tions for both genome evolution and biological engineering.

INTRODUCTION
Understanding the sources of diversity among individuals in a pop-
ulation has been a long-standing problem in biology. Genetic vari-
ability and environment account for most of this diversity. However, 
genetically identical individuals sharing the same environment still 
exhibit some phenotypic variability. This variability has been observed for 
more than half a century (1–3), and its mechanistic origins and evolutionary 
consequences have been intensively studied in the past decades (4–6).

Phenotypic variability stems from the stochastic nature of intra-
cellular biochemical processes, in particular, gene expression. Gene 
expression involves many molecular events requiring the random 
encounter of chemical species that are present in small numbers in-
side the cell, leading to stochastic births and deaths of mRNAs and 
proteins (“intrinsic noise”) (4, 7). In addition, gene expression relies 
on many molecules such as polymerases, ribosomes, nucleotides, or 
amino acids, whose concentration can fluctuate inside the cell, cre-
ating a stochastic environment for the protein production process 
(“extrinsic noise”) (4, 7). The intrinsic and extrinsic components of 
noise can be assessed using the dual-reporter method developed by 
Elowitz et al. (4), who found that both extrinsic and intrinsic sources 
can substantially contribute to noise in prokaryotic gene expression.

Gene expression can be divided into two main steps, namely, 
transcription and translation. The relative contribution of these 
two processes to noise generation has been investigated both theo-
retically and experimentally (8–11). The classical two-stage model 
of gene expression, which describes the temporal evolution of the 
number of mRNA molecules and the number of proteins as two 
Markovian birth and death processes (12), predicts a different impact 
of transcription and translation on gene expression noise (6, 8, 12, 13). 
In particular, in this model, the Fano factor of the protein copy 
number distribution, i.e., the variance divided by the mean, increases 
linearly with the rate of translation but is independent of the rate of 

transcription (8). This differential effect of translation and tran-
scription on noise reflects the importance of mRNA fluctuations in 
protein expression noise. mRNAs are present in small numbers in 
the cells and are therefore subject to strong fluctuations. mRNA 
fluctuations generate fluctuations in protein abundance, whose 
amplitude depends on the efficiency of translation, a phenomenon 
called translational bursting (6, 13, 14). The translational bursting 
mechanism was experimentally tested by Ozbudak et al. (9), who 
constructed four Bacillus subtilis strains expressing the green fluo-
rescent protein (GFP) under an inducible promoter but four different 
translation control elements. Measuring GFP abundance in single 
cells by flow cytometry, for the four different strains under different 
induction conditions, Ozbudak et al. (9) concluded that the Fano 
factor (variance divided by the mean), also called the “noise strength,” 
linearly depends on the translation rate but is largely independent 
of the transcription rate, confirming the translational bursting 
mechanism predicted by the two-stage model. As a result, the mean 
abundance of a protein and the expression noise have been deemed 
to be independently controllable through combinations of transcrip-
tion and translation control elements.

Noise in intracellular processes can limit the performance of the 
cell by driving it away from the optimal concentration of its molecular 
components (15–18). In contrast, it can also be used to create diver-
sity in a clonal population. This diversity can be the basis for bet-
hedging strategies in case of fluctuating environments (19–22), and 
it allows division of labor (23). Consequently, noise optimization 
can lead to substantial selective forces acting on genome evolution 
(5). It has, for instance, been shown that some regulatory motifs, 
such as negative feedback loops, can decrease the level of noise (24). 
These motifs can therefore be selected for during evolution on the 
basis of their noise reduction property. Likewise, the position of the 
gene in the genome can affect its expression noise (25, 26), and noise 
optimization has thus been proposed to exert a selective force on 
genome organization. The independent control of mean abundance 
and noise by translation and transcription control elements, such as 
that described by Ozbudak et al. (9), offers a particularly simple way 
to modulate the level of noise in the expression of a given gene. In 
other words, a given mean expression level can then be achieved 
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through different strategies leading to different noise levels: with a 
strong transcription and weak translation, leading to low noise levels, 
or with a weak transcription and strong translation, leading to high noise 
levels (6, 9). This would have important implications both for genome 
evolution and for synthetic biology and biological engineering, where 
the genetic elements controlling transcription and translation could 
be tuned to reduce noise and optimize a bioproduction process (27).

The translational bursting mechanism predicted by the two-stage 
model and evidenced in B. subtilis (9) is in agreement with later 
system-wide analysis in yeasts. A large number of naturally expressed 
proteins in Saccharomyces cerevisiae showed a scaling between pro-
tein abundance and noise, where the squared coefficient of variation 
is proportional to the inverse of the mean (28, 29). This scaling was 
interpreted as the result of mRNA fluctuations (28, 29). Similar system-
wide analysis in the model bacterium Escherichia coli revealed 
that a similar scaling exists for very weakly expressed genes (30). 
However, it does not hold for most of the proteome (30), question-
ing the generality of translational bursting. Although translational 
bursting is generally assumed to be the main mechanism underlying 
noise generation in prokaryotes, the experimental evidence is still 
scarce. To our knowledge, the study of Ozbudak et al. (9) is the only 
one where the effects of transcription and translation on noise were 
independently measured. Although the results of this study are co-
herent with theoretical predictions, this simple picture is clouded by 
several issues. First, the two-stage model is based on several questionable 
assumptions, such as the Poissonian production of mRNAs (31, 32), 
and it only describes intrinsic noise. Second, the experimental data 
of Ozbudak et al. (9) are based on only four strains with different 
translation control elements, and transcription is varied using an 
inducible promoter, whereas noise at intermediate induction levels 
are known to be strongly affected by extrinsic fluctuations in the 
activity of the regulatory protein mediating induction (4).

Translational bursting and the associated differential effect of 
transcription and translation rates on noise are often evoked as the 
basis for noise optimization strategies. Given the discrepancy between 
the importance of the result and the scarcity of experimental evi-
dence, we decided to revisit the relative contributions of transcription 
and translation in prokaryotic gene expression noise. To that end, we 
implemented a strategy similar to the one developed by Ozbudak et al. 
(9), allowing us to test independently the effect of translation and 
transcription. We designed a library of 40 strains of B. subtilis, where 
the chromosomally inserted gene of GFPmut3 is expressed under the 
control of a combination of different translation and transcription 
control elements. As a result, the fluorescence of the strains covers a 
wide range of expression that is representative of the entire natural 
range of expression in B. subtilis. For each strain, the fluorescence was 
quantified at the single-cell level using fluorescence microscopy and 
flow cytometry. We showed that in contrast to the prediction of the 
two-stage model and to previous experimental findings in B. subtilis 
(9), the noise strength (or Fano factor) increases linearly with both 
transcription and translation rates. Using the dual-reporter method 
designed by Elowitz et al. (4), we showed that this unexpected result 
can be explained by extrinsic noise.

RESULTS
Design of the 40-strain custom-made library
We designed a library of 40 B. subtilis strains in which the gene of 
the GFPmut3 protein is inserted into the chromosome and expressed 

under the control of a combination of eight different transcription 
control elements (transcription modules) and five different transla-
tion control elements (translation modules) (Fig. 1A). The different 
strains and their control elements are listed in table S1. The transla-
tion modules consist of natural (fbaA, gtlX, and tufA) or synthetic 
(fbaAhs and fbaAshort) translation initiation regions (TIRs), defined 
as the 5′ untranslated region deprived of the first eight nucleotides. 
Our transcription modules contain natural promoters, defined as 
the 50 base pairs (bp) preceding the first transcribed nucleotide and 
including the −35 and −10 boxes. The transcription start site (TSS), 
i.e., the first transcribed nucleotide, is known to affect the efficiency 
of initiation, and the site of initiation can vary by a few bases between 
several initiation events (33). Therefore, we decided to extend our 
transcription module beyond the promoter and include the extended 
TSS (eTSS), defined as the first eight transcribed nucleotides (34). 
The different promoters and TIRs were chosen to ensure a wide range 
of expression on the basis of data from Nicolas et al. (35) and 
Borkowski et al. (36). We constructed 37 of the 40 designed strains. 
For the three remaining strains, repeated failures in the construction 
suggest that for some uncharacterized reasons, the designed sequences 
impose a strong burden to the cells. Further details on the design and 
construction of the library can be found in the Supplementary Materials.

Quantification of protein concentration in single cells under 
controlled growth conditions
For all the strains in the library, we quantified the fluorescence at 
the single-cell level using both epifluorescence microscopy and flow 
cytometry. Flow cytometry allows fast, high-throughput data acqui-
sition but is less accurate and sensitive than fluorescence micros-
copy. In consequence, only 21 of the 37 strains of the library produced 
a quantifiable signal in cytometry. In contrast, the fluorescence of 
all the strains was quantified using microscopy, except the S27 
strain, which had an unexpectedly low fluorescence that was indis-
tinguishable from the natural autofluorescence of B. subtilis. In 
addition, for our analysis, the fluorescence signal has to be normalized 
by cell size to eliminate the variability coming from the cell cycle. 
Cell size can be directly measured from microscopy images, whereas 
it can only be coarsely estimated from cytometry measurements on 
the basis of the forward scatter signal (FSC). Therefore, we focused here 
on microscopy measurements and used flow cytometry as a control, 
ensuring that our conclusions are supported by data obtained using 
two independent measurement methods. The mean fluorescence and 
noise strength of the strains measured using cytometry are in agree-
ment with microscopy measurements (fig. S1), and all the conclu-
sions presented thereafter are supported by both cytometry and 
microscopy measurements.

Translation and transcription rates can vary substantially with 
the rate of growth, in a way that is dependent on the sequences con-
trolling expression (35, 36). As a consequence, to characterize gene 
expression noise in our library, the growth rate has to be reproducibly 
controlled between experiments. We therefore performed fluorescence 
measurements on cells that are in a steady state of “balanced” growth 
(37). More precisely, we plated diluted cell precultures on agarose 
pads and let single cells grow into microcolonies. We monitored micro-
colony growth, waited six to eight generations, allowing the growth 
rate to reach its steady-state value, and imaged ca. 30 microcolonies, 
in phase contrast and fluorescence. Analyzing microcolony growth 
rates, we found that their variations were limited (coefficient of 
variation, ~14%), were mainly due to interexperiment variability, and did 
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not significantly affect the fluorescence measurements (text S1). 
Single cells within microcolonies were segmented from phase con-
trast images, and their fluorescence was measured and normalized 
by the segmented cell area. Fluorescence values were then normal-
ized to actual protein concentrations based on fluorescence mea-
surements performed on strains with known protein abundances 
(see Materials and Methods).

For each strain, we performed at least two replicate experiments. 
Figure 1 (B and C) shows that fluorescence measurements were re-

producible between replicate experiments. This can be more quan-
titatively addressed using a partition of variance such as that per-
formed in a one-way analysis of variance (ANOVA). This analysis 
shows that for both mean fluorescence and noise strength, >95% of 
the variance observed between experiments is explained by the dif-
ferent strains used, whereas the residual variance corresponding to 
replicate experiments is <5% (see text S1).

The mean expression is mainly determined by independent 
effects of the transcription and translation modules
As shown in Fig. 1B, the library covers a 200-fold range of expres-
sion levels, which is representative of natural expression levels in 
B. subtilis (see fig. S2). Figure 1D shows the mean fluorescence of all 
the strains, ordered along the x axis according to the strength of their 
transcription module and along the y axis according to the strength 
of their translation module. As expected, the mean expression 
strongly depends on both the transcription and translation modules. 
Figure 1D also shows that, except for three strains that exhibit un-
expected behaviors (S04, S07, and S27; crossed-out pixels in Fig. 1D), 
the transcription modules can be ranked according to their strength 
independently of the translation module and reciprocally, suggesting 
that transcription and translation modules generally have indepen-
dent effects on mean expression. For S04, S07, and S27, the mean 
fluorescence is not coherent with the rankings of the modules, sug-
gesting a specific interaction, such as an effect of the eTSS on mRNA 
folding. In the simple two-stage model of gene expression, the mean 
expression of a gene is proportional to the product of the transcription 
rate and the translation rate. Therefore, according to this model, tran-
scription and translation modules are expected to have independent 
effects on the log-transformed mean expression. This assumption 
can be tested using a partition of variance, such as that performed 
in a two-way ANOVA. Using two-way ANOVA, the variance can 
be partitioned between the independent effects of the two factors, 
as well as an interaction term and a residual unexplained variance. 
The underlying model implies additive effects of the two factors, so 
here, we performed the ANOVA on the log-transformed mean flu-
orescence, using transcription and translation modules as factors. 
This analysis demonstrated that >90% of the total variance is ex-
plained by the independent effects of the transcription and transla-
tion modules (text S2). Our microscopy dataset contains only two 
replicate experiments per strain, which limits the precision of the 
ANOVA. Therefore, to further check the independence of the ef-
fects of the transcription and translation modules, we also mea-
sured the fluorescence of all the strains at the population level 
during exponential growth in 96-well microplates, performing five 
independent measurements for each strain. A two-way ANOVA 
confirmed the results obtained with our microscopy data (text S2). 
Therefore, the effects of transcription and translation modules on 
mean expression are mostly independent, except on some rare in-
stances where substantial interaction can occur, such as for the 
strains S04, S07, and S27, which were not used in the following 
analyses. These results are in agreement with previous results ob-
tained in E. coli with a similar approach by Mutalik et al. (38) and 
with a larger library by Kosuri et al. (39).

Expression noise strength depends on both the transcription 
and translation modules
We then analyzed how expression variability depends on the tran-
scription and translation modules. Here, we used the Fano factor or 

Fig. 1. Design and characterization of the 40-strain custom-made library. 
(A) Synthetic sequences are made of a combination of eight transcription modules 
(promoters and eTSS) exhibiting different transcription strengths (yellow intensity) 
and five translation modules (TIRs) exhibiting different translation efficiencies 
(blue intensity). Combined modules are cloned upstream of the GFPmut3 coding se-
quence, resulting in a library of 40 synthetic sequences, which allow a wide range of 
GFPmut3 expression, that is representative of the natural range of protein expression 
in B. subtilis (fig. S2). (B and C) Mean protein abundance (B) and protein concentration 
noise strength (C) of all the strains of the library. To facilitate the interpretation, the 
protein concentration is expressed in number of proteins in 1 fl, which is the average 
cell volume. Therefore, the mean concentration corresponds to the mean number of 
proteins per cell (mean protein abundance). The noise strength is defined as the 
variance of the single-cell protein concentration divided by the mean. For each strain, 
at least two replicate experiments were performed. Each dot represents a single 
experiment. Experiments using the same strains are represented with vertically 
aligned dots of identical color. (D and E) The strains are ordered in a two-dimensional 
map according to their transcription (x axis) and translation (y axis) modules. Translation 
modules (1, fbaAhs; 2, fbaA; 3, fbaAshort; 4, gtlX; and 5, tufA) and transcription modules 
(1, ykwB; 2, yufK; 3, yqzM; 4, zwf; 5, ykpA; 6, fbaA; 7, rrnJP2; and 8, ylxM) are ordered 
according to their strength. The color of the pixels represents the log-transformed 
mean protein abundance (D) and log-transformed noise strength (E). White pixels 
correspond to the strains that could not be constructed or measured. Crossed-out 
pixels correspond to strains with an unexpected mean fluorescence, suggesting 
specific interactions between the transcription and translation modules.
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noise strength, i.e., the variance divided by the mean, as a measure 
of expression variability. In the work of Ozbudak et al. (9), the noise 
strength was found to vary substantially with the translation rate, 
whereas the effect of the transcription rate was much weaker, as 
predicted by the two-stage model. In contrast, Fig. 1E shows that in 
our library, the noise strength depends substantially on both the 
transcription and translation modules.

We analyzed the dependence of the noise strength  on the 
translation module for each transcription module, as shown in Fig. 2 
and fig. S3. For each transcription module,  increases linearly with 
the mean expression  when the translation module changes, which 
is in agreement with previous work in B. subtilis (9). The two-stage 
model predicts that  increases linearly with the rate of translation 
and therefore increases linearly with  (  a·b, with a being the 
transcription rate and b being the translation rate) with a slope that 
depends on the strength of the transcription modules, i.e., the slope 
should be smaller for modules eliciting a higher transcription rate. 
We performed linear regressions of  versus  when the translation 
module is changed for each transcription module. The estimated 
slopes are given in table S3. As predicted by the model, the slope 
decreases with the strength of the transcription module.

Likewise, we analyzed the dependence of  on the transcription 
module for each translation module. In contrast to previous exper-
imental work in B. subtilis (9) and model predictions, we found that 
for all the translation modules,  increases linearly with  when the 
transcription rate changes. This is shown in Fig. 3 and fig. S4. We 
performed linear regressions and found that the slope is quite simi-
lar for all the translation modules (see table S4). The slopes are on 
the same order of magnitude than the slopes obtained when trans-
lation is modulated and transcription is constant (see tables S3 
and S4). Consequently, for many strains in the library, increasing 
the mean expression by changing transcription or translation modules 
leads to similar noise strength (Fig. 4A).

The differential effect of translation and transcription 
on noise is restricted to a regime of weak transcription that 
represents only a fraction of B. subtilis natural proteome
When the translation rate increases,  increases with , with a slope 
that depends on the strength of the transcription module (table S3). 
In contrast, when the transcription rate increases,  increases linearly 
with  with a slope that is independent of the translation module, 
but the intercept depends on the strength of the translation module 
(table S4). These relations impose a mathematical relationship be-
tween  and the rate of transcription (a) and translation (b) of the 
form  = C1 + C2·b + C3·ab (Eq. 1) (see text S4 for details), with C1, 
C2, and C3 constants. In previous works, relations between  and the 
rate of translation (b) were derived from a modeling approach on 
the basis of assumptions on the underlying biological mechanisms 
(8, 12, 13). In contrast, here, Eq. 1 is derived directly from the data, 
with no modeling assumptions. Equation 1 can be rewritten to show 
the dependence of  on :  = C1 + C2·/a + C3·. This equation 
shows that when the mean abundance is varied through the transla-
tion rate, the slope of  versus  (Stranslation) is the sum of a transcription-
dependent term (C2/a) and a constant term (C3). This constant C3 is 
the slope of  versus  when the transcription rate varies (Stranscription). 
Therefore, if C2/a is small compared to C3, then modulating tran-
scription or translation has a similar effect on noise (Stranslation ~ 
Stranscription). In contrast, if C2/a is large compared to C3, then trans-
lational bursting dominates and translation has a stronger impact 
than transcription on noise (Stranslation >> Stranscription). Thus, com-
paring C2/a and C3 allows defining a regime of weak transcription 
where translational bursting dominates noise production.

Comparing the slopes of Figs. 2 and 3 (see tables S3 and S4), we 
see that only the three weakest transcription modules of our library 
(ykwB, yufK, and yqzM) belong to this translational bursting regime. 
For these modules, C2/a is approximately twice as large as C3, i.e., 
Stranslation ~ 3.Stranscription. We analyzed genome-wide transcriptomic 
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Fig. 2. Noise strength of the protein concentration as a function of mean pro-
tein abundance when the translation module varies. Each subplot corresponds 
to a group of strains with the same transcription module: (A) fbaA, strains S1 to S3 
and S5; (B) rrnJP2, strains S7 to S9; (C) ykpA, strains S11 to S15; (D) ykwB, strains S16 
to S20; (E) ylxM, strains S21 to S24; (F) yqzM, strains S26 and S30; (G) yufK, strains 
S31 to S35; and (H) zwf, strains S36 to S40. In each subplot, the different colors 
correspond to different translation modules (blue, fbaAhs; cyan, fbaA; green, fbaAshort; 
magenta, gtlX; and red, tufA). Black lines are linear regressions (parameters are given 
in table S3). To facilitate the interpretation, the protein concentration is expressed 
in number of proteins in 1 fl, which is the average cell volume. Therefore, the mean 
concentration corresponds to the mean number of proteins per cell (mean abundance).
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data from the work of Nicolas et al. (35) and found that only ca. 30% 
of B. subtilis proteome corresponds to a transcription rate weaker 
than the one of yqzM (text S5 and fig. S6) and should therefore be-
long to the translational bursting regime. On the basis of Eq. 1 and 
the genome-wide transcriptomic data, we can also compute a theo-
retical value for Stranslation for the whole proteome (text S5 and fig. S7). 
Although this approach is unlikely to give precise predictions at the 
single-gene level, it allows estimating the fraction of the proteome 
that is in the translational bursting regime. For instance, we estimated 
that Stranslation is 10-fold (respectively 2-fold) higher than Stranscription 
for only 1% (respectively 35%) of B. subtilis native promoters.

Controlling for the effect of the eTSS
In the work of Ozbudak et al. (9), the transcription rate was modu-
lated by using an inducible promoter. In contrast, we used different 
transcription modules, all leading to constitutive gene expression. 
As explained in the first section, we decided to consider the first eight 
transcribed nucleotides, namely, the eTSS, as part of our transcrip-
tion modules because of its substantial effect on the transcription 
rate. However, these nucleotides are part of the mRNA sequence and 
therefore may also have an impact on its folding, degradation, and/
or translation (40). Therefore, our unexpected results could stem 
from the design of the library, the different transcription modules 
potentially having an artifactual impact on translation through their 
different eTSS (40). To rule out any bias due to the effect of the eTSS 
on mRNA translation and degradation, we constructed seven new 
strains where only the promoter varies, while the eTSS and TIRs are 
identical (strains A1 to A7; see table S1). Figure 4B shows that in 
these strains, the noise strength also increases with the mean ex-
pression level. Therefore, the effect of the transcription modules on 
noise strength in the whole library is not due to a bias caused by 
eTSS modifications. We also constructed six strains that have iden-

tical TIRs and promoters but different eTSS regions (strains B1 to 
B7; see table S1). We found that changing the eTSS, the promoter, 
or both gives rise to a similar effect on noise strength. This is illus-
trated in Fig. 4C.

The dependence of noise strength on transcription modules 
is due to extrinsic noise
Equation 1 ( = C1 + C2·b + C3·ab), which is derived directly from 
the linear relations observed in Figs. 2 and 3 and describes the de-
pendence of the noise strength on the transcription and translation 
rates, is reminiscent of the formula established by Taniguchi et al. 
(30) to take into account extrinsic noise. In the work of Taniguchi et al. 
(30), the two-stage model is generalized by introducing temporal 
fluctuations of the translation and transcription rates. The formula 
obtained for the noise strength is of the form of Eq. 1, with a and b 
being the average rates of transcription and translation and C1, C2, 
and C3 depending on the level of extrinsic noise. This suggests that 
our unexpected results could be due to a strong extrinsic noise com-
ponent. In E. coli, the noise was shown to scale with protein abun-
dance for very low expression levels and to reach a plateau when the 
mean abundance increases above ~10 proteins per cell (30). This pla-
teau was suggested to be the consequence of extrinsic noise (30). 
Our data also show a plateau for the noise, which is reached when 
the mean abundance increases above ~100 proteins per average cell 
volume (Fig. 5A). This global analysis is therefore also in agreement 
with a strong extrinsic noise.

To further assess the role of extrinsic noise, we used the dual-
reporter method developed by Elowitz et al. (4). For the eight strains 
that have identical eTSS and translation module but variable promoters 
(strains S03 and A1 to A7; see table S1), we introduced the gene of 
the mKate2 red fluorescent protein into the genome, with the same 
control elements as for the GFPmut3 (table S2). The mKate2 gene 
was introduced directly downstream of the GFPmut3 gene, thus 
limiting difference in gene copy number during the cell cycle. 
Quantification of both red and green fluorescence in single cells showed 
that the expression of mKate2 and GFPmut3 are strongly correlated 
in all strains (Spearman’s rank correlation between 0.6 and 0.9; 
P < 10−10; see fig. S5). The noise and noise strength can be de-
composed into their extrinsic and intrinsic components, as explicated 
by Elowitz et al. (4). The decomposition of noise shown in Fig. 5B 
shows that it is dominated by the extrinsic component, which ac-
counts for ca. 60% of the noise at the lowest expression levels and up 
to ca. 90% at the highest expression levels. Figure 5C shows that the 
increase of noise strength when transcription increases can be fully 
explained by the strong extrinsic component, which increases with 
transcription rate.

Essential and nonessential genes of B. subtilis exhibit similar 
relative levels of transcription and translation, except 
for very weakly transcribed genes
Genome-wide analysis of transcription and translation levels in the 
yeast S. cerevisiae revealed that essential genes are more transcribed 
and less translated than nonessential genes with the same protein 
expression level (17). This was interpreted as the signature of a selection 
pressure toward noise reduction, which is likely to be stronger for 
essential genes. This conclusion relies on the assumption that tun-
ing the relative levels of transcription and translation allows tuning 
the expression noise. In this work, we show that this strategy is less 
effective than previously thought in bacteria and only concerns very 
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Fig. 4. Noise strength of the protein concentration as a function of mean pro-
tein abundance when different control elements vary. To facilitate the interpre-
tation, the protein concentration is expressed in number of proteins in 1 fl, which 
is the average cell volume. Therefore, the mean concentration corresponds to the 
mean number of proteins per cell (mean abundance). (A) The mean protein abundance 
is modulated by changing the transcription (red) or the translation (green) module. 
The green dots correspond to the strains with the ylxM transcription module (and 
different translation modules, strains S21 to S24), and the red diamonds corresponds 
to the strains with the fbaAshort translation module (and different transcription 
modules, strains S03, S08, S13, S18, S23, S33, S38, A1 to A7, and B1 to B7). The super-
imposed green dot and red diamond correspond to the S23 strain (transcription 
module, ylxM and translation module, fbaAshort). Straight lines are linear regressions. 
(B) The mean protein abundance is modulated by changing only the promoter. 
The red squares correspond to different strains with the same eTSS and translation 
module (strains S03 and A1 to A7), and the black straight line is a linear regression. 
(C) The mean protein abundance is modulated by changing either the promoter 
[red squares, strains S03 and A1 to A7 as in (B)], the eTSS (blue circles, strains S8 and 
B1 to B7), or both (green diamonds, strains S13, S18, S23, S33, and S38).
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low expression levels for which intrinsic noise is stronger. Therefore, 
we investigated whether the different expression strategies observed 
for essential and nonessential genes in yeast also exist in B. subtilis. 
To that end, we performed a genome-wide analysis that allows com-
paring the levels of transcription and translation of essential and 
nonessential genes.

We used the transcriptomic and proteomic data presented by 
Borkowski et al. (36) and Goelzer et al. (41) and the list of essential 
genes from SubtiWiki (42). Protein abundance is, on average, higher 
for essential than nonessential genes. Therefore, to control for this 
effect, we grouped the genes according to their protein abundances. 
Then, for each group of similarly expressed genes, we divided the 
genes into three subgroups of identical size, according to their tran-
scription rate: the third of the genes that have the highest transcription 
rate, the third that has the lowest transcription rate, and the remain-
ing third. We then computed the number of essential genes in the 
two extreme subgroups (lowest and highest transcription rates), as 
performed by Fraser et al. (17). These subgroups a priori contain 
essential and nonessential genes, and if essential and nonessential 
genes have similar expression strategies, then the number of essen-
tial genes in the different subgroups should be similar. In S. cerevisiae, 
the number of essential genes was shown to be 2- to 10-fold higher 
in the high-transcription subgroups for all the protein expression 
levels (17). In contrast, Fig. 6 shows that in B. subtilis, the number of 
essential genes in the highly transcribed (red) and weakly transcribed 
(blue) subgroups are not markedly different. Thus, B. subtilis does 
not use markedly different expression strategies for essential and 
nonessential genes. However, note that there is a significant enrich-
ment of essential genes in the high-transcription subgroups for genes 
with low expression levels (typically <300 proteins per cell). Note 
that the genome-wide data used here contain genes that are tran-
scriptionally regulated, and low expression levels may correspond 
to transcriptional repression. However, removing genes that are 
likely to be transcriptionally regulated does not change the results 
shown in Fig. 6A (as Fig. 6A, where all genes are included, is similar 
to fig. S8, where regulated genes are excluded), suggesting that the 
different expression strategies of essential and nonessential genes at 
low expression levels are not due to different transcriptional regulation. 

In contrast, it may reflect a selection pressure for noise reduction of 
poorly expressed essential genes.

As we presented above, translational bursting dominates noise pro-
duction only in a regime of weak transcription, which represents only 
a small fraction of the natural proteome. For instance, we showed 
that only ca. 30% of natural promoters should lead to Stranslation > 
3 × Stranscription. Restricting the analysis shown in Fig. 6A to this group 
of weakly transcribed genes gives identical results, as shown in 
Fig. 6B. In contrast, if we use the 70% most transcribed genes, then 
the effect at low expression levels disappears and no difference can 
be detected between essential and nonessential genes (Fig. 6C).

DISCUSSION
It is generally assumed that translational bursting is the dominant 
source of noise in prokaryotic gene expression and that translation 
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Fig. 5. Impact of extrinsic noise. (A) The noise (squared coefficient of variation: CV2, y) 
of the protein concentration as a function of the mean protein abundance (x) for all 
the strains. Each blue circle corresponds to a single experiment with a single strain. The 
red line corresponds to a fit y = C/x for all the experiments for which x < 50 (left part 
of the graph). (B) The total noise (blue), extrinsic noise (green), and intrinsic noise 
(red; y) as a function of the mean (x), for the two-colored strains (same eTSS and trans-
lation module and different promoters). The red line is a fit y = k1/x + k2, as in (4). (C) The 
total (blue dots), extrinsic (green dots), and intrinsic (red dots) noise strength as a 
function of the mean, for the two-colored strains. Straight lines are linear regres-
sions. To facilitate the interpretation, the protein concentration is expressed in number 
of proteins in 1 fl, which is the average cell volume. Therefore, the mean concentration 
corresponds to the mean number of proteins per cell (mean abundance).

Fig. 6. Expression strategies for essential and nonessential genes. (A to C) Genes 
are grouped according to the protein abundance, and each group is divided into 
three subgroups of identical size according to the transcription rate. The sub-
groups are formed with the third of the genes that have the highest transcription 
rate, the third that has the lowest transcription rate, and the remaining third. Then, 
the number of essential genes in each subgroup is computed. Red circles, number of 
essential genes in the high-transcription subgroup; blue circles, number of essential 
genes in the low-transcription subgroup. The filled circles indicate significant differ-
ences based on Fisher’s exact test (P < 0.05). (A) The analysis is performed on all genes 
in the genome. (B) The analysis is performed on a subset of genes that are weakly 
transcribed (less transcribed than yqzM). (C) The analysis is performed on the rest of 
the genes (i.e., those more transcribed than yqzM). In (A) to (C), the procedure to 
group the genes of identical protein abundance is not a simple binning and creates 
groups of genes whose levels of expression are not significantly based on an ANOVA 
(see Materials and Methods for details). The different groups therefore do not con-
tain the same number of genes, and the number of groups is different in (A) to (C).
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therefore has a stronger impact on noise than transcription. In this 
work, we show that translational bursting dominates noise produc-
tion only in a regime of weak transcription, which corresponds to a 
small fraction of the natural transcription range of bacteria. In contrast, 
for most of the natural expression range, translation and transcrip-
tion modulations have similar effects on noise. We show here that 
this phenomenon can be explained by the prevalence of extrinsic noise.

As previously demonstrated, very weak promoters associated 
with strong translation control elements can promote noisy expres-
sion (43). Such an expression strategy could therefore be selected 
for by evolution or implemented in synthetic biology approaches to 
increase population diversity and/or implement bet-hedging strate-
gies. However, our results show that for most of B. subtilis natural 
transcription range, noise cannot be tuned independently of mean 
abundance by varying the ratio of transcription and translation rates. 
This strategy is therefore less general than previously thought 
(6, 8, 9), which has important implications both for synthetic biology 
and engineering and for genome evolution. In bioengineering, the 
control of gene expression noise is an essential component of sys-
tem design. Until now, strong promoters and weak RBS (ribosome 
binding site) sequences were favored when assembling robust, i.e., 
low-noise gene circuits (27). Our results indicate that the future of 
bioengineering will require the elaboration of a novel framework 
for engineering noise in various living systems.

Our analysis of genome-wide transcriptomic and proteomic 
data in B. subtilis shows that at low expression levels, essential genes 
are transcribed more and translated less than nonessential genes of 
identical protein abundance. As previously proposed for yeasts, this 
difference may reflect a selection pressure for noise reduction, which 
is assumed to be stronger for essential genes. Notably, the difference 
in expression strategies between essential and nonessential genes is 
restricted to a fraction of the genome, which corresponds to weakly 
transcribed genes. Therefore, our experimental results and our 
genome-wide analysis offer a coherent picture. In the weak tran-
scription regime, noise can be tuned independently of mean abun-
dance by varying the ratio of transcription and translation, leading 
to a selection force acting on genome evolution. However, this force 
is negligible in the evolution of most of the genome.

Translational bursting is expected to have a different impact on 
noise for different functional categories of genes. In particular, tran-
scription factors are known to be present at low copy number in the 
cell compared to enzymes or structural proteins (44). In addition, 
among transcription factors, those that act specifically on a few genes, 
such as E. coli Lac repressor, are usually present at lower concentra-
tions than global regulators that act on many genes. Low copy number 
transcription factors are therefore expected to be in the weak tran-
scription regime, where noise can be tuned independently of mean 
expression. This noise tuning can lead to strong phenotypic effects 
and provide a basis for specific bet-hedging strategies (22, 43). In 
contrast, for enzymes that are present in high copy number, expres-
sion noise cannot be tuned by varying the ratio of transcription and 
translation. The cell therefore often implements alternative strate-
gies to minimize the fluctuations in biochemical pathways, such as 
the negative regulation of a biosynthesis pathway by its end product.

The existence of two regimes of noise production, dominated either 
by translational bursting or extrinsic noise depending on the strength 
of transcription, is likely to hold for other organisms. Different or-
ganisms may be in different regimes depending on their natural tran-
scription range and the source and intensity of the extrinsic noise. In 

yeasts, markedly different expression strategies between essential and 
nonessential genes suggest that noise can generally be tuned by varying 
the ratio of transcription and translation, thus suggesting that at the 
whole-genome scale, noise production is mainly in the regime where 
translational bursting prevails. This pattern may be related to the level 
of extrinsic noise, which was reported to be lower in yeasts than in 
bacteria (28, 29). Note that in the case of transcriptional bursting, i.e., 
when promoters can stochastically switch between inactive and ac-
tive states, different regimes of noise production can also be defined, 
by comparing the transcription rate to the activation and inactivation 
rates of the promoter (11). Therefore, both extrinsic noise and tran-
scriptional bursting can prevail over translational bursting, restricting 
the regime in which noise can be tuned independently of the mean 
abundance by varying the ratio of transcription and translation.

MATERIALS AND METHODS
Strain construction
E. coli Mach1T1 and TG1 were used for plasmid construction and 
amplification, respectively, using standard techniques (45). B. subtilis 
strains were obtained by integration of the plasmid by single crossing-
over in a tryptophan prototrophic 168 strain (BSB168) (46), using 
standard procedures.

When required, DNA fragments were purified using the QIAquick 
PCR Purification Kit or QIAquick Gel Extraction Kit (QIAGEN, 
Hilden, Germany). Plasmids were purified from E. coli cultures using 
the QIAprep Spin Miniprep Kit (QIAGEN).

The vectors used to generate the strain collection were made as 
follows: The vector pBaSysBioII (46) was linearized by Eco RV and 
recircularized by ligation of a 714-bp PCR (polymerase chain reaction) 
product to obtain the plasmid PL1. The PCR fragment was obtained 
by amplification of B. subtilis chromosomal DNA between the co-
ordinates 213.017 and 213.757 according to the version AL009126 
of the complete genome of B. subtilis deposited in GenBank.

The synthetic sequences used to control expression of GFPmut3 
in the strains S01 to S40 (table S1) have been chemically synthesized 
by GeneArt. Briefly, each of the synthetic sequence is made of the 
association of a given promoter, an eTSS, and a TIR. These DNA 
sequences are preceded by a 29-bp sequence identical to the 29 bp 
upstream of the promoter PfbaA in the original PL1 and followed by 
29 bp identical to the first 29 bp of the GFPmut3 coding sequence.

Plasmids PL1S01 to PL1S40 had been built as follows: The plas-
mid PL1 was PCR-amplified using primers P-PS-AM and P-PS-AV, 
resulting in a linear DNA sequence of 5243 bp made of the whole 
PL1 plasmid devoid of any promoter and RBS upstream of the 
GFPmut3 coding sequence (CDS). Synthetic sequences were PCR-
amplified using the universal primers PS-F and PS-R, purified, and 
cloned in the plasmid by Gibson assembly using a NEBuilder HiFi 
DNA Assembly kit according to the manufacturer’s instructions 
(New England Biolabs, Ipswich, MA, USA). Each Gibson assembly 
mix has been used to transform chemically competent Mach1T1 E. coli 
cells. Once sequenced (GATC Biotech, Cologne, Germany), recom-
binant plasmids were transformed and multiplied in chemically com-
petent TG1 cells before transformation in BSB168.

Preparing cell cultures for single-cell  
fluorescence measurements
The following protocol is used to ensure a steady state of balanced 
growth. All incubation steps are performed at 37°C under agitation. 
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Cultures are inoculated in LB supplemented with spectinomycin 
(100 g/ml) and incubated overnight. They are then diluted 100-fold in 
LB, incubated for 2 hours, and then diluted 50-fold in S Medium 
[0.2% (NH4)2SO4, 1.4% K2HPO4, 0.6% KH2PO4, 0.1% sodium citrate, 
0.0096% MgSO4, 10−4% MnSO4, 0.5% glucose, and 0.00135% FeCl3] 
and incubated for 2 hours. The culture is then diluted 8-fold in S medium, 
incubated for 3 hours, diluted again 70,000-fold in S medium, and 
incubated until the optical density at 600 nm reaches 0.2. The culture 
is then analyzed by flow cytometry and/or fluorescence microscopy.

Flow cytometry
Single-cell fluorescence, FSC, and side scatter measurements were 
carried out on a Becton Dickinson FACSCalibur flow cytometer, 
equipped with a 488-nm excitation laser and a 530/30-nm emission 
filter, and controlled by the CellQuest software. For all the strains, 
measurements were performed with the same laser power and voltage 
settings. The exponentially growing cultures were diluted 40-fold, 
and measurements were performed on 104 to 105 cells.

Microscopy
Microcolony growth monitoring and single-cell fluorescence mea-
surements were performed using an inverted DeltaVision Elite 
microscope equipped with the Ultimate Focus system for automatic 
focalization, a 100× oil immersion objective (numerical aperture 1.4), 
a temperature-controlled chamber (37°C), and the DV Elite sCMOS 
Camera. Bright-field illumination was provided by a white light-
emitting diode (LED), and fluorescence illumination was provided 
by the DV Light Solid State Illuminator 7 Colors (475-nm LED for 
GFP and 575-nm LED for mKate2). Our microscope can perform 
two different illumination techniques: Köhler illumination and critical 
illumination. We used critical illumination to improve evenness of 
illumination.

A liquid solution of 1.5% high-resolution low-gelling tempera-
ture agarose (Sigma-Aldrich) in S medium is prepared. To that end, 
agarose is first dissolved in water, heated, and allowed to cool down 
to 50°C. The components of the S medium are then added to the 
agarose solution. A Gene Frame (125 l, 1.7 cm by 2.8 cm; Thermo 
Fisher Scientific) is stuck on a clean glass slide (Knittel Glass; 76 mm 
by 26 mm); the resulting cavity is filled with S-agarose, covered with 
a microscope slide, and cooled for 1 hour at 4°C. Then, the micro-
scope slide is removed, and stripes of S-agarose are removed using 
a surgical scalpel to leave three small stripes of agarose (~4 mm 
wide, with ~4 mm spacing), separated by air cavities ensuring oxygen-
ation. Three different strains are then loaded on the three agarose 
stripes. To that end, the exponentially growing cultures are diluted 
300-fold, and cca. 2 ml is deposited on each agarose stripe. Once the 
liquid is absorbed, the cavity is sealed with a clean coverslip (Knittel 
Glass Cover Slips; 24 mm by 60 mm), and the slide is placed in 
the temperature-controlled chamber set at 37°C for 1 hour before 
acquisition begins.

We first follow the growth of microcolonies from single cells us-
ing phase contrast microscopy. Images are acquired using 50-ms 
exposure with 32% of the maximum intensity of the white LED. For 
each strain, we image ~30 microcolonies, every 5 or 10 min, for cca. 
4 hours. After 4 hours of growth, the cells are in a steady state of 
growth, and the microcolonies are still in monolayers. We then im-
age ca. 30 microcolonies, using both phase contrast and fluorescence. 
Depending on their fluorescence levels, the strains are imaged with 
different illumination intensities and/or exposure times.

Translating fluorescence into protein number
To convert the fluorescence levels into protein concentrations, we 
quantified the fluorescence of two B. subtilis strains that express 
GFPmut3 and for which the concentration of proteins was previously 
quantified by two-photon fluorescence fluctuation microscopy (47). 
More precisely, we used two strains where GFPmut3 is under the 
control of the gapB or the cggR promoter, and we measured the 
fluorescence during exponential growth in 96-well microplates in S 
medium with glucose or malate as carbon sources, leading to different 
induction levels of the gapB or cggR promoters [see (47)]. We simul-
taneously measured the fluorescence of the S5, S9, and S13 strains 
in glucose-S medium, to allow determining the average concentra-
tion of proteins for those strains. The single-cell fluorescence data 
are then normalized accordingly for the whole library.

Image analysis
The fluorescence images are first corrected for inhomogeneous illu-
mination. To estimate the illumination profile [b(x,y): the illumination 
intensity at (x,y) coordinate], we averaged ~40 images of agarose 
pads supplemented with fluorescein. For an image I0(x,y), we per-
form the following normalization to get the corrected image I1(x,y): 
I1(x,y) = I0(x,y) <b(x,y)>/b(x,y), where <b(x,y)> is the mean inten-
sity averaged over every pixel. We also correct for the autofluorescence 
of the agarose gel by subtracting to the fluorescence image the average 
background intensity (pixels outside of the microcolony). We also 
normalize the fluorescence signal by the excitation energy to take 
into account the different illumination settings used for different 
strains. The corrected images are then analyzed using Schnitzcells 
software (48). Bacteria are segmented using the phase contrast im-
ages, and their fluorescence intensity is measured, i.e., the total 
fluorescence of the cell normalized by the cell area.

Single-cell data analysis
All data analysis is performed using MATLAB. One-way and two-
way ANOVAs are performed using MATLAB’s functions anova1 
and anova2.

For both microscopy and flow cytometry data, autofluorescence 
was estimated from measurements of the wild-type BSB168 strain, 
which does not contain any fluorescent protein. The single-cell fluo-
rescence of cells expressing GFP and/or mKate2 is the sum of the 
contribution from the fluorescent proteins and the autofluorescence. 
Therefore, to reflect only the number of fluorescent proteins, the mean 
fluorescence is corrected by subtracting the mean autofluorescence. 
The single-cell autofluorescence is assumed to be independent of 
the number of fluorescent proteins in cells expressing GFP and/or 
mKate2. Therefore, the variance of the fluorescence can be corrected 
by subtracting the variance of the autofluorescence.

Analysis of the microscopy data shows that the autofluorescence 
is Gaussian. In the flow cytometry data, the distribution of auto-
fluorescence is truncated on the left of a threshold that corresponds 
to the sensitivity of the cytometer. We therefore reconstruct the whole 
distribution as follows: The sensitivity threshold is lower than the 
mode of the distribution (i.e., the maximum of the density). There-
fore, the right half of the distribution can be estimated. The whole 
Gaussian distribution is then reconstructed by symmetry, and the 
average and variance can be estimated.

For single-cell fluorescence measurements with the flow cytometer, 
we eliminated all the strains for which the fluorescence distribution 
was truncated by the sensitivity threshold. To reduce the fluctuations 
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originating from cell size variations in the cytometry data, we kept 
only the cells whose FSC signal was within ±3% of the mode of the 
FSC signal distribution.

Analysis of expression strategies for essential 
and nonessential genes
The transcriptomic and proteomic data are taken from the works of 
Borkowski et al. (36) and Goelzer et al. (41), respectively, and the 
list of essential genes is taken from SubtiWiki (42). For each gene, 
the dataset contains several independent proteomic measures (up to 
nine replicates) and several independent transcriptomic measures 
(up to four replicates). Genes were binned according to their pro-
tein expression as follows: First, protein expression was estimated 
for each gene as the average of the proteomic replicates, and the 
genes were ranked according to this averaged measure. Then, we 
use all the replicates to take into account the level of confidence of 
the proteomic measure for each gene and to group the genes whose 
levels of expression are not significantly different. Starting with the 
first gene, we add the next genes one by one, performing a one-way 
ANOVA at each step. If the P value of the ANOVA is larger than a 
fixed threshold (0.05), then the gene is added to the group. Otherwise, 
it is used to start a new group, where genes are added one by one 
similarly. In contrast to a simple binning, this procedure takes into 
account the level of confidence of the measurements and produces 
groups of genes whose levels of expression are not significantly different.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/41/eabc3478/DC1 

View/request a protocol for this paper from Bio-protocol.
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