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generally occur in the transition region between the sloped south-
ern cap and the flatter equatorial region. In the northern hemi-
sphere, fewer such localized large low-albedo features exist, although 
some large dark areas with scattered fine-scale material identified 
early as rock slides or falls are present, mainly between the north-
south ridges.

The large low-albedo features in the southern hemisphere ex-
tend in a north-south direction toward the south pole, appearing 
as a spoke-like pattern in a polar stereographic projection (Fig. 7, 
top right). In fig. S7, the approximate longitudinal extents of the 
north-south ridges consistent with the OLA model and as identi-
fied in (8) are reported along with the approximate longitudinal 
extent of the low-albedo spokes. Only one of these radial patterns 
is associated with the longitudes of the north-south ridges; the 
other four are associated with the regions between the ridges. The 
one that is correlated with a ridge contains a large outcrop-like 
feature that may be representative of the underlying structural 
material. All but one of the southern boulders contribute to the 
low-albedo spokes.

In addition to the hemispheric differences in the albedo as mea-
sured by OLA, Bennu’s thermal inertia varies as a function of latitude: 
The equatorial region has the highest values, and the poles have the 
lowest (31). In the north, a relatively constant positive thermal inertia 
slope extends from the polar low of 280 J m−2 K−1 s−1/2 to the equa-
torial high of almost 330 J m−2 K−1 s−1/2. In the south, the polar thermal 
inertia is a lower 265 J m−2 K−1 s−1/2 and remains near that value until 
−45° latitude and below the north-polar high until −30° latitude (31).

DISCUSSION
The distinctions we identified between the northern and southern 
hemispheres of Bennu suggest fundamental differences in surface 
properties and subsurface structure. The southern hemisphere is 
rounder and smoother at surface roughness scales of 10 and 30 cm. 
Furthermore, its variations in elevation are smaller (±1 m versus ±3 m) 
and longitudinally more regular than those in the north, and its 
near-constant thermal inertia values (31) suggest greater homoge-
neity in surface material.

Fig. 7. OLA-derived albedo registered to a shape model slightly shaded to indicate topography. Dark (green and blue) areas are more prevalent in the southern 
hemisphere, with dark “spokes” present between the longitudinal ridges (approximate locations shown in white). The sides of some rocks do not have meaningful OLA 
lidar albedo data owing to observation angle limitations and so appear gray in some views.
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Four longitudinal ridges extend pole to pole, but in the southern 
hemisphere, two of these are obscured by surface material. The 
southern hemisphere exhibits a spoke-like pattern of large, low- 
albedo (as derived from OLA data) areas, which tend to occur be-
tween the longitudinal ridges. The lower-elevation interridge areas 
may be collecting fragments of the large, dark boulders common in 
the south as they break down over time.

The longitudinal ridges on Bennu have been suggested to be 
structural and indicative of cohesion and strength (8). Their sub-
dued nature, especially in the south, suggests that they are old relative 
to the resurfacing processes that may have led to the hemispherical 
differences we have identified. The ridges are expressed in the equa-
torial region and are largely responsible for the rounded-square 
equatorial shape. The presence of some of the largest craters on 
Bennu near the equator suggests that the equatorial bulge is old and, 
therefore, that the ridges are of similar age.

The longitudinal ridges may be indicative of a “wedging” rota-
tional failure in Bennu’s history, similar to those modeled for rubble 
piles in (32). In those simulations, the amount of cohesion controls 
the number of cohesive elements (wedges), and ridges occur at or 
near the centers of these elements. In some simulations of near- 
spherical asteroids, the cohesive elements are roughly equal-sized 
sectors with pole-to-pole extents. We thus suggest that Bennu un-
derwent a spin-related wedging event, in which material collapsed 
toward the asteroid center, exposing the largest structural units at 
the surface. No disturbed or deformed craters are observed on Bennu 
that can be traced to this process, further implying that the longitu-
dinal ridges are at least as old as the surface age inferred from the 
crater population (11).

The evidence that the wedging occurred early in Bennu’s history 
indicates it must have arisen during a past spin-up that led to partial 
disruption of the asteroid. The formation of the wedges would have 
led to inertial or topographic changes that impeded further disrup-
tion by changes in the moments of inertia of the asteroid and/or 
alterations to the YORP drivers of shape and surface thermo-optical 
properties. The wedging event may have happened during the reac-
cumulation process that formed Bennu following its parent body’s 
disruption (33) or in any subsequent YORP-driven spin-up event (18).

The southern hemisphere’s four-sector elevation profiles exhibit 
regularly spaced terrace-like features extending over at least two 
sectors. These terrace-like forms are further indicated by median 
calculations for sectoral analyses (Fig. 4). We assert that more regu-
lar and evenly spaced slips are compatible with a more homoge-
neous regolith that exhibits similar strength over the majority of the 
southern cap. This would allow for surface material slip to occur 
with some regularity as a function of elevation as Bennu undergoes 
its current spin-up. In the north, the paucity of large material- 
impeding boulders has precluded the development of such homo-
geneity; more material may have moved downslope to better expose 
the longitudinal ridges.

The large material-impeding boulders in the southern hemi-
sphere are present primarily between longitudinal ridges. There-
fore, they may have been present before and during the longitudinal 
ridge–creation process. Their rounded, often lumpy appearance 
provides further evidence for their old age. These boulders may be 
of sufficient size that they become embedded in surrounding mate-
rial that inhibits movement, or they may indicate underlying struc-
tural strength in the southern hemisphere near-surface that does 
not exist in the north.

The finding that thermal inertia is almost constant over the 
southern cap—whereas, in the northern hemisphere, the values in-
crease linearly toward the equator (31)—suggests that a mechanism 
is active in the north that alters or sorts the regolith with downslope 
movement. [It might also be active at the equator, but mechanisms 
proposed by (10, 34) could be the driver at low latitudes.] This mech-
anism could be related to size, and/or composition, and/or porosity. 
For a size-related mechanism, considerable changes to the size- 
frequency distribution of regolith within the few-centimeters-thick 
thermal skin depth (31) would be necessary to be evidenced in the 
thermal inertia.

Bennu’s low and high values of thermal inertia correspond re-
spectively to low and high albedos, as measured by image analysis 
(26, 31). A mechanical sorting process may be at work where densi-
ty and mechanical strength preferentially retain more high-albedo 
and high-thermal-inertia material near the surface in substantial 
downslope movements, of which we see more evidence in the 
northern hemisphere. This would result in more low-albedo mate-
rial remaining in the south, consistent with our observation.

The southern hemisphere is smoother particularly at the 10-cm 
scale for latitudes >67°, which is more relevant than the 30-cm scale 
to the thermal inertia, given the skin depths of a few centimeters. 
The higher roughness in the north is suggestive of more dynamic 
processes and, in particular, the sorting process driven by mass 
movement, where larger size fractions (in this case, >10 cm) provide 
additional surface roughness, up to the 30-cm scale, at which the 
roughness between the two hemispheres becomes more similar. In 
many mass movements, larger objects rise to the surface via the 
Brazil nut effect (35) and sort by increasing size in the flow direction. 
Such increasing size sorting is visible on Bennu at some of the rock 
deposits seen at the base of ridges in the northern hemisphere and 
is further reflected in the increasing surface roughness estimates 
with decreasing latitude (Fig. 5). Alternatively, the roughness differ-
ences may be dominated by preferential loss of weak, low-strength, 
low-albedo material with downslope movement, as suggested by the 
thermal inertia results discussed above. The smoother southern 
surface is consistent with the retaining of fine material that is able to 
settle into a shape closer to that of an equipotential surface (Fig. 2).

The boulder population suggests an explanation for the observed 
homogeneity in the south. Boulders that appear perched or non-
embedded are more prevalent in the south and extend to lower lat-
itudes than those in the north. We interpret this as further evidence 
of less downslope flow and more settling of rocks in concert with 
the supporting fines in the south, as opposed to processes that move 
material toward the equatorial sink in the north. Large boulders in 
the southern hemisphere are holding back material and allowing 
some of the smaller boulders closer to the pole to remain perched 
and relatively undisturbed. We posit that the retention of fines and 
the decreased significance of downslope processes that sort and 
differentiate the surface material are the reason for the more ho-
mogenous southern hemisphere.

The hemispherical asymmetry in the surface distribution of 
large boulders, and its consequence for the surface processes that 
resulted in the different shapes of the hemispheres, is probably not 
an outcome of wedging. More likely, the conditions leading to this 
asymmetry were set up during the early reaccumulation following 
Bennu’s parent body disruption. Numerical simulations of reaccu-
mulation after disruption [e.g., (32)] show that asymmetry may 
occur, even when an asteroid that appears to have a spinning top 
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shape is formed after catastrophic disruption. We propose that sub-
sequent downslope movement has uncovered pre-existing boulders 
in the areas between ridges, which, in the south, act to impede fur-
ther downslope movement of material to the equator and subdue 
the expression of the ridges at the surface. In the north, the paucity 
of large retaining boulders has led to a more dynamic deposition 
environment with little retention and more uncovering of the old 
longitudinal ridges.

The shape and topography of Bennu suggest a formation in 
which a north-south asymmetry was established in the population 
of large boulders. During this event, or thereafter, Bennu’s equato-
rial bulge was likely formed by spin-related processes. Coincident 
with or closely following bulge creation, Bennu’s rotation was ac-
celerated either through reaccumulation processes or by the 
YORP effect, resulting in partial disruption into four wedges that 
formed the structural elements of the north-south ridges. The un-
derlying structural strength after the wedging event was dominated 
by axial strength supported by the ridges and supplemented by the 
population of large blocks and possible subsurface population of 
similar material. Subsequent surface refiguring by downslope 
material movement was hindered in the south by these large, 
material- retaining boulders and possible underlying structure, re-
sulting in a more homogeneous southern hemisphere cap. In the 
north, the paucity of large boulders allowed for greater downslope 
flow and more material- or size-sorting processes. It also uncovered 
the ridges that are obscured by surface material in the south.

MATERIALS AND METHODS
Global DTM
The GDTM of Bennu was created using a series of individual 5.5-min 
continuous OLA scans taken at a measurement rate of 10 kHz be-
tween 1 July and 5 August 2019. Each of these scans (e.g., fig. S1) 
overlapped the previous scan in a sequence that typically consisted 
of 15 to 20 scans (e.g., fig. S2). OLA scans are referenced with unique 
scan identifiers (scan IDs), and this dataset consists of scan IDs 
4000 through 4910, with scans 4711 through 4729 excluded due to 
an instrument power-up anomaly and subsequent operational exe-
cution using obsolete software.

The scans were corrected for spacecraft position, spacecraft 
pointing, and Bennu’s rotation using the SPICE framework (36, 37). 
They were then assembled into a self-consistent global point cloud 
by iteratively minimizing the differences between matched features 
in overlapping scans as described in (13, 14) until the scan mis-
matches were balanced over all the scans. The method depends on 
each scan being well constructed to minimize long-wavelength 
shape errors. The quality of the resulting model point cloud was 
initially evaluated by gridding the data using GMT (15) into 1/32- degree 
bins and plotting the SD in each bin (fig. S3). Poor registration of 
individual scans would be apparent in this as clearly delineated, 
anomalously high SDs with boundaries that correspond to individ-
ual scans. Visible scan edge artifacts are not evident in fig. S3.

The deviations in fig. S3 are instead dominated by surface fea-
tures at these scales, with the largest deviations representing the 
edges of boulders. To achieve these low SDs in the GDTM, an addi-
tional correction to the scan data was required. Initial models created 
using this process resulted in 1 to 1.5 m of compression at the equa-
tor and a similar expansion at the poles. Investigations into the ori-
gin of this long-wavelength shape error were conducted after initial 

analyses that compared approximately orthogonal scans near the 
poles suggested a scanning mirror scale error of compression in the 
azimuthal scan axis and/or expansion in the elevation axis. This 
error was verified, and empirical corrections were derived by evalu-
ating the goodness of fit in the development of global models. Figure 
S4 shows the result of this analysis and its sensitivity. The resulting 
correction factors that were applied to the scan angles to develop 
this model were 1.0073 for the azimuth and 1.0000 for the elevation.

An additional check on the quality of the model is provided by 
the shifts required to assemble it from the J2000 frame positions 
derived from spacecraft positions. Tight constraints on spacecraft 
position are possible, in this case, as the spacecraft was orbiting 
Bennu in the near-terminator orbit and many orbits can be used to 
understand the local dynamics of the spacecraft. For this model, the 
average bias was a negligible ≈2 cm with no latitudinal bias (fig. S5), 
providing additional support for the data quality and scale of the 
resulting point cloud.

The global point cloud was meshed into a surface using the Poisson 
reconstruction meshing technique (16) that supplements the techniques 
described in (14) to preserve overhangs where supporting data exist.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/41/eabd3649/DC1
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