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by a recurrent neural network might be less robust. Therefore, we 
considered situations where the distribution of noise patterns used 
during training and testing was different. The recurrent network 
failed to generalize well to higher standard deviations of Gaussian 
noise (Fig. 7D) and failed markedly when tested with uniformly 
distributed noise (Fig. 7E) or Gaussian noise with an offset (Fig. 7F). 
In stark contrast, the intrinsic mechanism generalized well across 
all of these different input noise changes (Fig. 7, D to F, magenta). 
This over-fitting cannot just be explained by a difference in the 
number of parameters and also occurs when the number of param­
eters is equalized between the two networks (fig. S11). Furthermore, 
depending on the number of parameters, the recurrent network did 
not necessarily demonstrate the hallmark property of repetition 
suppression (fig. S12). In sum, while a recurrent network imple­
mentation can learn to solve the same task, the solution is less 
robust than an intrinsic mechanism to deviations from the particular 
statistics of the adapter noise used for training the network. These 
results suggest that intrinsic neuronal mechanisms could provide 
sensory systems in the brain with a well-regularized solution to re­
duce salience of recent input, which is computationally simple and 
readily generalizes to novel sensory conditions.

DISCUSSION
We examined whether the paradigmatic neurophysiological and 
perceptual signatures of adaptation can be explained by a biologi­
cally inspired, activation-based, intrinsic suppression mechanism 
(7) in a feedforward deep network. The proposed computational 
model bridges the fundamental levels at which adaptation phenomena 
have been described: from intrinsic cellular mechanisms, to responses 
of neurons within a network, to perception. By implementing 
activation-based suppression (Fig. 1), our model exhibited stimulus-

specific repetition suppression (4, 5), which recovers over time but 
also builds up across repeats despite intervening stimuli (48) and 
increases over stages of processing (Fig. 2) (12, 49). Without any 
fine-tuning of parameters, the same model could explain classical 
perceptual aftereffects of adaptation (Fig. 3), such as the prototypical 
shift in perceptual bias toward the adapter (36, 38) and enhanced 
discriminability around the adapter (41, 50), thus suggesting that 
adaptation modulated the functional state of the network similarly 
to our visual system. In single units, perceptual aftereffects were 
associated with changes in overall responsivity (including response 
enhancements) as well as changes in neural tuning (Figs. 4 and 5). 
In addition, both intrinsic and recurrent circuit adaptation mecha­
nisms can be trained in a task where reducing the salience of repeated 
but irrelevant input directly affects recognition performance (Fig. 6). 
However, the recurrent neural network converged on a circuit 
solution that was less robust to different noise conditions than 
the proposed model with intrinsic neuronal adaptation (Fig. 7). 
Together, these results show that a neuronally intrinsic suppression 
mechanism can robustly account for adaptation effects at the neuro­
physiological and perceptual levels.

The proposed computational model differs in fundamental ways 
from previous models of adaptation. Traditionally, adaptation has 
been modeled using multiple-channel models, where a fixed stimulus 
dimension such as orientation is encoded by a set of bell-shaped 
tuning functions (6, 19, 20). The core difference is that here we 
implemented adaptation in a deep, convolutional neural network 
model trained on object recognition (35). Even though current 
convolutional neural networks differ from biological vision in many 
ways (27), they constitute a reasonable first-order approximation 
for modeling ventral stream processing and provide an exciting 
opportunity for building general and comprehensive models of ad­
aptation. First, in contrast with channel-based models, deep neural 

Fig. 4. Response enhancements and tuning shifts emerge in deeper layers of a network incorporating intrinsic suppression. (A) Effects of adapting to female/male 
faces on the activation strength of single units. Left: Heatmap showing the activation normalized to the maximum of all 556 responsive fc7 units (rows) for all face-gender 
morph images (columns). See the color scale on the bottom left. Rows are sorted according to the SIg (Eq. 3). The remaining five heatmaps show the difference (post − pre 
adaptation) in single-unit activations after adapting to five different adapters. See the color scale on the bottom right. (B) Mean response change (activity post − activity pre) across 
responsive units for each layer (shaded area = 95% bootstrap CI). For highly gender-selective units (red), the magnitude change (averaged across stimuli) was taken after adapt-
ing to a gender stimulus opposite to the unit’s preferred gender [0% adapter for SIg > 0.6, 100% adapter for SIg < −0.6; black rectangles in (A)]. For less gender-selective units 
(blue), the magnitude change after both 0 and 100% adapters was used. (C) Proportion of adapters causing the preferred morph level to shift toward (attractive, magenta) 
or away (repulsive, green) from the adapter, averaged across units (shaded area = 95% bootstrap CI). (D) An example unit showing a repulsive shift in tuning curves for 
the 25% (left) and 75% (right) adapters [the y axes depict activation in arbitrary units (a.u.); black, preadaptation tuning curve; green, postadaptation tuning curve; yellow 
marker, adapter morph level]. (E) An example unit showing an attractive shift in tuning curves [magenta, postadaptation tuning curve; same conventions as (D)].
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networks can operate on any arbitrary image, from simple gratings 
to complex natural images. Second, the features encoded by the 
deep neural network model units are not hand-crafted tuning func­
tions restricted to one particular stimulus dimension but consist of 
a rich set of increasingly complex features optimized for object 
recognition, which map reasonably well onto the features encoded 
by neurons along the primate ventral stream (28–32). A set of bell-
shaped tuning curves might be a reasonable approximation of the 
encoding of oriented gratings in V1, but this scheme might not be 
appropriate for other visual areas or more complex natural images. 
Third, the realization that adaptation should be considered in the 
context of deep networks, where the effects can propagate from one 
stage of processing to the next (2, 21), calls for complex multilayer 
models that can capture the cascading of adaptation. Last, whereas 
several models implement adaptation by adjusting recurrent weights 
between channels (19, 20), we implemented an intrinsic suppres­
sion property for each unit and allowed adaptation effects to emerge 
from the feedforward interactions of differentially adapted units.

The goal was not to fit the model on specific datasets but to 
generally capture the phenomenology of adaptation in a model by 
giving its artificial neurons a biophysically plausible mechanism. 
The adaptation parameters  and  were not fine-tuned for each 
simulated experiment and had the same value for each unit, showing 
that the ability of the model to produce adaptation phenomena did 
not hinge upon a carefully picked combination of parameters.

By using a feedforward deep neural network as the base for our 
computational model, we were able to empirically study the role of 
intrinsic suppression, without any contribution of recurrent inter­
actions. These results should not be interpreted to imply that recur­
rent computations are irrelevant in adaptation. The results show 
that complex neural adaptation phenomena readily emerged in 
deeper layers, arguing that, in principle, they do not need to depend 
on recurrent mechanisms. Among the neural adaptation effects 
were enhanced responses of single units, as well as shifts in tuning 
curves, which are often thought to require recurrent network mech­

anisms (13, 15, 16, 18). Any effect of intrinsic suppression could 
also be implemented by lateral inhibitory connections in the circuit, 
leaving open the question of why the brain would prefer one 
solution over the other. The generalization tests in Fig. 7 point to an 
intriguing possibility, which is that intrinsic suppression provides a 
simpler solution that is more constrained, yet sufficient to imple­
ment the goals of adaptation. In contrast, recurrent mechanisms 
require a complex combination of weights to achieve the same goals 
and tended to over-fit to the specific training conditions.

There are several functional goals that have been attributed to 
adaptation. Activation-based suppression could serve to decrease 
salience of recently seen stimuli or features (5, 21). We successfully 
exploited this principle to train adaptation in neural networks on a 
task with temporally repeated but irrelevant noise patterns. Reducing 
the salience of recently seen features has functional consequences 
beyond these artificial conditions. By selectively reducing the sensi­
tivity of the system based on previous exposure, adaptation effec­
tively changes the subjective experience of an observer, leading, for 
example, to a perceptual bias in the face-gender aftereffect. These 
changes in perception may more broadly reflect mechanisms that 
serve to maintain perceptual constancy by compensating for varia­
tions in the environment (51). The introduction of activation-based, 
intrinsic suppression to an artificial neural network subjected 
the network to the same perceptual biases characterizing percep­
tual aftereffects in humans (Fig. 3, B and C), suggesting that 
intrinsic suppression changed the model’s functional state in a way 
that is similar to how exposure changes the functional state of our 
visual system.

Another proposed benefit of reducing sensitivity for recently seen 
stimuli may be to improve the detection of novel or less frequently 

Fig. 5. Response magnitude and tuning changes in the model differentially 
explain perceptual boundary shifts and discriminability changes. (A) Face-
gender boundary shifts toward the adapter were produced both by magnitude 
changes without tuning changes (top) and by tuning changes without magnitude 
changes (bottom). Gray shading indicates the range of original layer effects shown 
in Fig. 3C. (B) Face-gender discriminability enhancement for morph levels close to 
the adapter was produced by tuning changes without magnitude changes (bottom), 
but not by magnitude changes without tuning changes (top). Gray shading 
indicates the range of original layer effects shown in Fig. 3E.

Fig. 6. Adapting to prevailing but interfering input enhances object recognition 
performance. (A) Representative examples for each of the five doodle categories 
from the total set of 540 selected images (63). (B) Schematic illustration of the 
conditions used in the doodle experiment. In each trial, participants or the model had 
to classify a hand-drawn doodle hidden in noise (test), after adapting to the same 
(middle), a different (right), or no (left) noise pattern. The trials with different or no 
noise adapters were control conditions where we expected to see no effect of 
adaptation. (C) Participants showed an increase in categorization performance 
after adapting to the same noise pattern. Gray circles and lines denote individual 
participants (n = 15). The colored circles show average categorization performance; 
error bars indicate 95% bootstrap CIs. Chance = 20%.
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occurring stimuli (12, 48). For example, by selectively decreasing 
responses for more frequent stimuli, adaptation can account for the 
encoding of object occurrence probability, described in macaque IT 
(52, 53). Consistent with these observations, intrinsic suppression 
in the proposed computational model decreased the response 
strength for a given stimulus proportional to its probability of 
occurrence (Fig. 2, H to J). The model also produced stronger re­
sponses to a deviant stimulus compared to an equiprobable control 
condition. Thus, response strength in the model captured not only 
differences in occurrence probability (standard versus deviant) but 

also relative differences in occurrence probability (control versus 
deviant): Compared to the control condition, the deviant is equally 
likely in terms of absolute occurrence probability, but it was un­
expected merely by virtue of the higher occurrence probability of 
the standard stimulus.

Adaptation has also been suggested to increase coding efficiency 
of single neurons by normalizing their responses for the current 
sensory conditions (4). Neurons have a limited dynamic range with 
respect to the feature they encode and a limited number of response 
levels. Adaptation can maximize the information carried by a neuron 
by re-centering tuning around the prevailing conditions and 
thus increasing sensitivity and preventing response saturation (51). 
While AlexNet has ReLU activation functions, which do not suffer 
from the saturation problem, we did observe an abundance of attrac­
tive shifts of tuning curves (Fig. 4C). The collective result of these 
changes in tuning curves was an increased discriminability between 
stimuli similar to the adapter (Fig. 4D), consistent with reports 
for orientation, motion direction, and face-gender discrimination 
in humans (41, 50).

Besides direct functional benefits, adaptation may also serve an 
important role in optimizing the efficiency of the neural population 
code. Neurons use large amounts of energy to generate action 
potentials, which constrains neural representations (54). When a 
particular feature combination is common, the metabolic efficiency 
of the neural code can be improved by decorrelating responses of 
the activated cells and reducing their responsiveness. Adaptation 
has been shown to maintain existing response correlations and 
equality in time-averaged responses across the population (55), 
possibly resulting from intrinsic suppression at an earlier corti­
cal stage, which we confirmed by running these experiments in the 
proposed computational model (fig. S13).

There are several possible extensions to the current model, includ­
ing the incorporation of multiple time scales and recurrent circuit 
mechanisms. Adaptation operates over a range of time scales and 
thus may be best described by a scale-invariant power law, which could 
be approximated by extending the model using a sum of exponential 
processes (56). Our model also did not include any recurrent dy­
namics, because we focused on the feedforward propagation of in­
trinsic suppression. Yet, recurrent connections are abundant in 
sensory systems and most likely do contribute to adaptation. There 
is some evidence suggesting that recurrent mechanisms contribute 
to adaptation at very short time scales of up to 100 ms (57). During 
the first 50 to 100 ms after exposure, adaptation to an oriented 
grating produces a perceptual boundary shift in the opposite di­
rection of the classical tilt aftereffect (58). This observation was pre­
dicted by a recurrent V1 model that only predicted repulsive tuning 
shifts (6). Repulsive shifts are indeed more common in V1 when 
each test stimulus is immediately preceded by an adapter (13, 18), 
whereas adaptation seems to produce mostly attractive shifts at longer 
gaps (14, 43, 59), consistent with the effects of intrinsic suppres­
sion in the proposed model (Fig. 4 and fig. S5; although repulsive 
shifts were more common in highly responsive units; fig. S6). These 
results seem to suggest that recurrent interactions contribute in the 
first (few) 100 ms, whereas qualitatively different longer adapta­
tion effects might be best accounted for by intrinsic suppression.

The results of the noisy doodle experiment in humans (Fig. 6) 
could be explained by local light adaptation to the adapter noise 
patterns. It is unclear where in the visual system such local light 
adaptation would take place. In principle, it could take place 

Fig. 7. Intrinsic adaptation can be trained by maximizing recognition perform
ance and is more robust to over-fitting than a recurrent neural network. 
(A) A convolutional neural network with an AlexNet-like feedforward architecture. 
For the adaptation version, an exponentially decaying hidden state was added to 
each unit according to Eqs. 1 and 2 (except for the decoder). For the recurrent version, 
fully recurrent weights were added for the fully connected layer and convolutional 
recurrent kernels for the three convolutional layers (see drawings in blue; Materials 
and Methods). (B) Average fitted parameters  and  for each layer after training 30 
random initializations of the network with intrinsic adaptation state on same noise 
trials (SEM bars are smaller than the markers). (C) Test categorization performance 
on trials with the same Gaussian noise distribution as during training. Full markers: 
average categorization performance after training 30 random initializations on the 
same noise trials without intrinsic adaptation state (black), after training with 
intrinsic adaptation state on same noise trials (blue) or on different noise trials 
(orange). Empty markers: same as full markers but for the recurrent neural network. 
SEM bars are smaller than the markers. Chance = 20%, indicated by the horizontal 
dotted line. (D to F) Average generalization performance of the networks with an 
intrinsic adaptation state (magenta), recurrent weights (blue), or neither (gray) for 
same noise trials under noise conditions that differed from training. Performance 
is plotted as a function of increasing standard deviations (x axis) of Gaussian 
noise [(D), the vertical line indicates the SD = 0.32 used during training] and uni-
form noise (E) or as a function of increasing offset values added to Gaussian noise 
[(F), SD = 0.32, same as training]. Error bounds indicate SEM.
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partly or totally at the level of photoreceptors in the retina. However, 
given that each noise pixel was only 0.3 × 0.3 visual degrees and 
given that luminance was distributed independently across noise 
pixels, inherent variability in the gaze of a fixating subject poses a 
limit on the contribution of photoreceptor adaptation (60). Most 
likely, the increased performance observed in the behavioral data 
results from a combination of adaptation at different stages of pro­
cessing, including the retina. The proposed computational model 
does not incorporate adaptation at the receptor level (i.e., pixels), 
but future models could incorporate adaptation in both the input 
layer and later processing layers.

Overall, the current framework connects systems to cellular neuro­
science in one comprehensive multilevel model by including an 
activation-based, intrinsic suppression mechanism in a deep neural 
network. Response suppression cascading through a feedforward 
hierarchical network changed the functional state of the network similar 
to visual adaptation, producing complex downstream neural adaptation 
effects as well as perceptual aftereffects. These results demonstrate that 
intrinsic neural mechanisms may contribute substantially to the 
dynamics of sensory processing and perception in a temporal context.

MATERIALS AND METHODS
Computational models
Implementing intrinsic suppression
We used the AlexNet architecture (Fig. 1A) (35), with weights 
pretrained on the ImageNet dataset (61) as a model for the ventral 
visual stream. We implemented an exponentially decaying intrinsic 
adaptation state (62) to simulate neuronally intrinsic suppression. 
Specifically, in all layers (except the decoder), each unit had an 
intrinsic adaptation state st, which was updated at each time step t 
based on its previous state st−1 and the previous response rt−1 (i.e., 
activation after the ReLU rectification and linearization operation)

	​​ s​ t​​  =   ​s​ t−1​​ + (1 −  ) ​r​ t−1​​​	 (1)

where  is a constant in [0,1] determining the time scale of the 
decay (Fig. 1B). This intrinsic adaptation state is then subtracted 
from the unit’s current input xt (given weights W and bias b) before 
applying the rectifier activation function , so that

	​​ r​ t​​  =  (b + ​Wx​ t​​ −  ​s​ t​​)​	 (2)

where  is a constant that scales the amount of suppression. Thus, 
strictly speaking, Eq. 2 modifies the bias and thus responsivity of the 
unit, before applying , to avoid negative activations. For  > 0, 
these model updating rules result in an exponentially decaying re­
sponse for constant input that recovers in case of no input (Fig. 1B), 
simulating an activation-based suppression mechanism intrinsic to 
each individual neuron. Note that  < 0 would lead to response 
enhancement and  = 0 would leave the response unchanged. By 
implementing this mechanism across discrete time steps in AlexNet, 
we introduced a temporal dimension to the network (Fig. 1C). 
This model was implemented using TensorFlow v1.11 in Python. 
Throughout the paper, we use  = 0.96 and  = 0.7 unless indicated 
otherwise (in Fig. 7, those parameters are tuned).
Decision boundaries
Perceptual aftereffects are typically measured by computing shifts 
in the decision boundary along a stimulus dimension. We evaluated 

boundary shifts in the model using a set of face stimuli that morphed 
from average male to average female in 100 steps (created using 
webmorph.org) and measured category decision boundaries before and 
after adaptation using the 101 face-morph images (Fig. 3, A to C). 
The experiments were simulated by exposing the model to an adapter 
image for 100 time steps, followed by a gap of uniform gray input 
for 10 time steps before presenting the test image. The results were 
qualitatively similar when the number of time steps was changed.

To measure the pre- and postadaptation decision boundaries for 
a given layer, we trained a logistic regression classifier to discriminate 
between male and female faces using the preadaptation activations 
of responsive units for the full stimulus set. After training, the 
classifier can output female/male class probability estimates for any 
given activation pattern. Thus, we used the trained classifier to 
provide female/male probability estimates for each morph level, 
based on either the pre- or postadaptation activation patterns. The 
decision boundary is then given by the morph level associated with 
a female/male class probability of P = 0.5, which was estimated by 
fitting a psychometric function on the class probabilities (average 
R2 of at least 0.99 per layer).
Face-gender discriminability
To assess model changes in face-gender discriminability in Fig. 3J, 
we calculated the stimulus discriminability at each morph level of 
the stimulus dimension before and after adaptation. An increased 
discriminability between morph levels can be conceptualized as an 
increased perceived change in morph levels with respect to a certain 
physical change in morph level. Thus, to quantify discriminability, 
a linear mapping was fit to predict stimulus morph levels from pre­
adaptation unit activations using partial least squares regression 
(using four components). We then used this linear mapping to pre­
dict morph levels from activation patterns before and after adapta­
tion. If adaptation increases discriminability, then the change in 
model-estimated morph level y with respect to a physical change 
in morph level m should also increase. Thus, to quantify the change 
in discriminability at morph level m, we calculated the absolute 
derivative of the predicted postadaptation morph level (ympost), nor­
malized by the absolute derivative of the predicted preadaptation 
morph level (ympre): |ympost|/|ympre|.
Selectively retaining tuning or magnitude changes
For Fig. 4B, we manipulated the postadaptation layer activations to 
only contain either tuning changes or magnitude changes. To retain 
only tuning changes, we started with the postadaptation activation 
patterns and multiplied the activation of each unit by a constant so 
that the resulting mean activation matched the preadaptation mean 
value. On the other hand, to retain only magnitude changes, we 
started with the preadaptation activation patterns and multiplied 
the activation of each unit by a constant so that the resulting mean 
activation matched the postadaptation mean value.
Learning adaptation
In Fig. 7, we present two models where adaptation is learned for the 
noisy doodle classification task: a model with intrinsic adaptation 
state and a recurrent neural network model. The base feedforward 
part of the model was based on the AlexNet architecture (35) for the 
two networks, consisting of three convolutional layers and a fully 
connected layer followed by a fully connected decoder. The first 
convolutional layer filters a 28 × 28 × 1 input image with 32 kernels 
of size 5 × 5 × 1 with a stride of 1 pixel. The second convolutional 
layer filters the pooled (kernel = 2 × 2, stride = 2) output of the first 
convolutional layer with 32 kernels of size 5 × 5 × 32 (stride = 1). 
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The third convolutional layer filters the pooled (kernel = 2 × 2, 
stride = 2) output of the second convolutional layer with 32 kernels 
of size 3 × 3 × 32 (stride = 1). The fully connected layer has 1024 
units that process the output of the third convolutional layer with 
50% dropout during training.

The recurrent version was extended with lateral recurrent 
weights. For convolutional layers, lateral recurrence was imple­
mented as 32 kernels of size 1 × 1 × 32 (stride = 1), which filtered the 
nonpooled outputs of the layer at time step t − 1 (after ReLu) and 
were added to the feedforward-filtered inputs of the same layer at 
time step t (before ReLu). The fully connected layer was recurrent in 
an all-to-all fashion.

The intrinsic adaptation version was extended with adaptation 
states, as described in the “Implementing intrinsic suppression” 
section, of which the  and  parameters were now also trained 
using back-propagation. The  parameters were initialized at 0 (i.e., 
no adaptation), and the  parameters were initialized using a uni­
form distribution ranging from 0 to 1.

Both the recurrent and intrinsic adaptation models were trained 
on the doodle classification task using TensorFlow v1.11 in Python. 
We used a training set of 500,000 doodle images (https://github.
com/googlecreativelab/quickdraw-dataset; 100,000 per category), 
with a separate set of 1000 images to select hyperparameters and 
evaluate the loss and accuracy during training. We used the Adam 
optimization algorithm (63) with a learning rate of 0.001, the sparse 
softmax cross entropy between logits and labels cost function, a 
batch size of 100, and 50% training dropout in fully connected 
layers. For the weights, we used Gaussian initialization, with the 
scale correction proposed by Glorot and Bengio (64). Each model 
was trained for five epochs on the training set, which was sufficient 
for the loss and accuracy to saturate. Generalization performance 
was then tested on a third independent set of 5000 images.

Neurophysiology
We present neurophysiological data from two previously published 
studies to compare them with the neural adaptation effects of the 
proposed computational model: single-cell recordings from IT 
(n = 97) cortex of one macaque monkey G (37) and multi-unit 
recordings from V1 (n = 55) and latero-intermediate visual area 
(LI; n = 48) of three rats (12). For methodological details about the 
recordings and the tasks, we refer to the original papers.

Psychophysics
Before starting the data collection, we preregistered the study design 
and hypothesis on the Open Science Framework at https://osf.io/
tdb37/ where all the source code and data can be retrieved.
Participants
A total of 17 volunteers (10 female, ages 19 to 50) participated in 
our doodle categorization experiments (Fig. 6). In accordance with 
our preregistered data exclusion rule, two male participants were 
excluded from analyses because we could not record eye tracking 
data. All subjects gave informed consent, and the studies were 
approved by the Institutional Review Board at Children’s Hospital, 
Harvard Medical School.
Stimuli
The stimulus set consisted of hand-drawn doodles of apples, cars, 
faces, fish, and flowers from the Quick, Draw! dataset (https://
github.com/googlecreativelab/quickdraw-dataset). We selected a total 
of 540 doodles (108 from each of the five categories) that were 

judged complete and identifiable. We lowered the contrast of each 
doodle image (28 × 28 pixels) to either 22 or 29% of the original 
contrast, before adding a Gaussian noise pattern (SD = 0.165 in nor­
malized pixel values) of the same resolution. The higher contrast 
level (29%) was chosen as a control so that the doodle was relatively 
visible in one-sixth of the trials and was not included in the analy­
ses. The average categorization performance on these high-contrast 
trials was 74% (SD = 8.3%), versus 63% (SD = 8.9%) in the low-
contrast trials.
Experimental protocol
Participants had to fixate a cross at the center of the screen to start a 
trial. Next, an adapter image was presented (for 0.5, 2, or 4 s), fol­
lowed by a blank interval (of 50, 250, or 500 ms), a test image (for 
500 ms), and lastly a response prompt screen. The test images were 
noisy doodles described in the above paragraph. The adapter image 
could either be an empty frame (defined by a white square filled 
with the background color), the same mosaic noise pattern as the 
one of the subsequent test image, or a randomly generated different 
noise pattern (Fig. 6). Participants were asked to keep looking at the 
fixation cross, which remained visible throughout the entire trial, 
until they were prompted to classify the test image using keyboard 
keys 1 to 5. All images were presented at 9° × 9° from a viewing 
distance of approximately 52 cm on a 19-inch cathode ray tube 
monitor (Sony Multiscan G520; 1024 × 1280 resolution), while we 
continuously tracked eye movements using a video-based eye track­
er (EyeLink 1000, SR Research, Canada). Trials where the root 
mean square deviation of the eye movements exceeded 1° of visual 
angle during adapter presentation were excluded from further 
analyses. The experiment was controlled by custom code written in 
MATLAB using Psychophysics Toolbox Version 3.0 (65).

Data analysis
Selectivity index
For the face-gender experiments, we calculated a selectivity index 
based on the average activation of a unit to male (morph level < 50%) 
and female (morph level > 50%) faces

	​​ SI​ g​​  =  (​A​ F​​ − ​A​ M​​ ) / (​A​ F​​ + ​A​ M​​)​	 (3)

A value >0 indicates stronger activation for female faces, and a 
value <0 indicates stronger activation for male faces.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/42/eabd4205/DC1

View/request a protocol for this paper from Bio-protocol.
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