
Pinsky et al., Sci. Adv. 2020; 6 : eabb8428     11 December 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 9

E N V I R O N M E N T A L  S C I E N C E S

Ocean planning for species on the move provides 
substantial benefits and requires few trade-offs
M. L. Pinsky1*, L. A. Rogers2,3, J. W. Morley4, T. L. Frölicher5,6

Societies increasingly use multisector ocean planning as a tool to mitigate conflicts over space in the sea, but such 
plans can be highly sensitive to species redistribution driven by climate change or other factors. A key uncertainty 
is whether planning ahead for future species redistributions imposes high opportunity costs and sharp trade-offs 
against current ocean plans. Here, we use more than 10,000 projections for marine animals around North America 
to test the impact of climate-driven species redistributions on the ability of ocean plans to meet their goals. We 
show that planning for redistributions can substantially reduce exposure to risks from climate change with little 
additional area set aside and with few trade-offs against current ocean plan effectiveness. Networks of manage-
ment areas are a key strategy. While climate change will severely disrupt many human activities, we find a strong 
benefit to proactively planning for long-term ocean change.

INTRODUCTION
The coastal ocean is a crowded landscape that supports diverse and 
expanding human uses, from fishing and recreation to energy de-
velopment, transportation, aquaculture, and conservation (1–3). 
Governance that historically focused on individual activities or spe-
cies has often allowed substantial and negative cumulative impacts 
on ocean ecosystems, including the decline of coral reefs and the 
collapse of both fishery and non-fishery species (1, 4, 5). In addition, 
many ocean and coastal uses affect and conflict with each other, 
such as scenic views and wind turbines or conservation and fishing 
(2, 6). As a result, ecosystem-based management efforts to coordi-
nate among marine activities have become common, often expressed 
as coastal and marine spatial planning or ocean planning (1, 2, 4, 7).

Ecological principles for ocean planning are built upon the spa-
tial distribution of species, habitats, and ecological communities 
(8, 9). Even though species and biogenic habitats are rapidly shifting 
geographically as climate changes (10) and despite calls for greater 
consideration of these climate change impacts (7, 11), species redis-
tributions are not a central consideration in the current principles, 
legal frameworks, or examples of ocean planning (7, 11, 12). A major 
impediment has been uncertainty about the difficulty of and trade-
offs required for incorporating long-term change into multisector 
ocean plans (3, 12).

Periodic revisions of ocean plans could enable climate adaptation 
over time, although revisions are challenging given the substantial 
negotiations among stakeholders inherent to ocean planning and 
the long-term legal agreements and impacts involved in offshore 
energy, mineral extraction, and other development or habitat-modifying 
activities (13). Alternatively, ocean plans could be designed around 
climate change impacts from the start (14), but the extent to which 

advance planning across multiple sectors can help in this regard 
remains unclear. One proposal in the context of conservation alone 
has been to identify areas that are likely to be consistently important 
through time (15). It is unknown whether planning for the future 
requires setting aside substantially more area for ocean plans or 
whether there are strong trade-offs between plans that are effective 
in the near term versus those that are effective in the long term. One 
heuristic approach for climate adaptation may be to designate net-
works of management areas that could act like stepping-stones as 
species shift (14). The extent to which networks can help in this 
regard, however, has not been quantified.

Here, we use nine regions on the continental shelves of North 
America (Fig. 1) to study these issues. Ocean planning efforts have 
occurred and are under way to varying degrees across this geography 
(6). We simulated the multisector ocean planning process to site 
zones for conservation, fishing, or energy development within each 
region. Inspired by the Convention on Biological Diversity’s (CBD’s) 
Aichi Target 11, we designed conservation zones to protect at least 
10% of the locations with occurrences of each species in a region. In 
contrast, we designed fishery zones to include locations that had, in 
sum, at least 50% of the biomass of each of the top 10 fishery species 
in each region. Energy zones included at least 20% of the value from 
wind and wave energy resources, consistent with the ~20% of off-
shore energy potential proposed to be captured as part of a road-
map to 100% clean energy (16, 17).

RESULTS AND DISCUSSION
We first developed myopic “present-only” plans that only considered 
species’ current geographic distributions for evaluating whether 
conservation and fishery zones met their goals. We then evaluated 
these plans against 11,776 projections of future species habitat dis-
tributions through time: 736 species across eight climate models follow-
ing a low [Representative Concentration Pathway (RCP) 2.6] and a 
high (RCP8.5) greenhouse gas emissions scenario. This evaluation 
revealed substantial declines in effectiveness of the present-only 
plans that implied difficulty meeting societal targets for fishing and 
conservation (Fig. 2). By the middle of the 21st century (2041–2060), 
an average of 63 ± 16% (±1 SD across climate models and scenarios) 
of goals were met (Fig. 2). Only 50 ± 18% of goals were met, on 
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average, by the end of this century (2081–2100) under a high green-
house gas emissions scenario (64 ± 16% under a low emissions sce-
nario). Plans were especially sensitive to species habitat redistribution 
in the Eastern Bering Sea, Northeast United States, and the Canadian 
Maritimes (Fig. 2), where plans met less than half of the goals by the 
end of this century.

We contrasted these results with a “proactive” approach that ex-
plicitly planned for future species redistributions. The plans were 
developed to meet the conservation, fishing, and energy goals both 
under current species habitat distributions and future habitat distri-
butions (see Materials and Methods). The species projections that 
were used for planning were not used for plan evaluation. Compared 
to present-only plans, proactive plans were substantially different 
and changed the zone designation for 22 ± 7% of the area across the 
nine regions (Fig. 3). However, proactive solutions included only 
marginally more area (0 to 7% more per region, mean 2 ± 0.07% SE) 
in conservation, fishing, or energy zones than did present-only 
plans (Fig. 3). Ocean plans that require less area also leave more 
space (more opportunities) available for other ocean uses, both in-
cluding and beyond the three activities we considered. The small 
increase in area required for the proactive plans implies that there 
was relatively little opportunity cost of planning for the future. In 
contrast, some ocean plans have high opportunity costs. An ineffi-
cient designation of marine conservation areas in South Australia, 
for example, has been described as an opportunity cost that may 
impede the expansion of marine conservation (18).

We then evaluated the proactive plans under 16 sets of redistri-
bution projections (eight climate models across two emissions sce-
narios) that had not been used in planning. Despite this constraint, 

the plans met 75 ± 15% (±1 SD) of goals by the middle of the century 
(Fig. 2). Under a high greenhouse gas emissions scenario, the plans 
met 64 ± 19% of goals by the end of the century or 76 ± 14% under 
low emissions scenario (Fig. 2). This was significantly more goals 
met than the present-only plans [odds ratio: 1.9 (95% confidence 
interval: 1.86 to 1.97), P = 2 × 10−16, n = 1440, generalized linear 
mixed-effects model with binomial errors]. Some conservation and 
fishing goals could not be met by the end of this century even with 
careful planning because species were expected to be extirpated from 
a region by then. Proactive plans, however, were also relatively 
robust to uncertainty in species redistributions across emissions 
scenarios and global climate models. With a proactive plan, we 
found a 42% chance of not meeting at least 7 in every 10 planning 
goals by the end of the 21st century across regions. In contrast, present- 
only plans had a 72% chance of not meeting at least 7 in every 
10 planning goals by the end of this century.

Many of the benefits of proactive planning as compared to present- 
only plans appeared well before the end of this century (Fig. 2), con-
sistent with substantial spread in species distribution projections 
under different global climate models in all time windows (19). 
Planning for long-term species redistribution therefore appears to 
have the added benefit of hedging against near-term uncertainty.

To more explicitly examine trade-offs, we plotted trade-off curves 
(6, 20) for ocean plans in terms of their ability to meet conservation 
(10% of all species’ occurrences) and fishing (50% of fishery species 
biomass) goals in the present time versus goals at the end of the 
century. Trade-off curves, also called constraint envelopes or Pareto 
efficiency frontiers, are visualization tools from microeconomics 
that represent the maximum extent to which one goal can be met 

Fig. 1. Study areas for simulating the ocean planning process, shown with projected species turnover (Sørenson dissimilarity) 2007–2100 on the continental shelf. 
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for a given value of another goal, and vice versa, subject to con-
straints like a limited budget (20). The shape of the curve indicates 
the type of trade-off between two goals, which, in our case, are goals 
for the present and for the future (Fig. 4). A plan that designates 
larger conservation and fishing zones in effect costs more because it 
restricts ocean uses across a wider area, so we defined the budget in 
terms of the total area used for the ocean plan. For plotting the trade-off 
curves, we then limited the plans to only use 75% of the total area 
that would have been needed to meet all of the ocean plan goals. 
The curves revealed little to no trade-off between present and future 
(Fig. 4). In four regions (Gulf of Alaska, West Coast United States, 
Maritimes, and Newfoundland), right-angle lines on the curves in-
dicated that present and future goals did not interact (no trade-off) 
and that plans could maximize both future and present goals at the 
same time. In the other five regions, small, angled corners indicated 
a minimal trade-off among future and present goals. The largest trade-
off was in the Northeast United States, where 9% more future goals 
could be met in exchange for a 9% decrease in present goals met, or 
vice versa (Fig. 4). Trade-off curves for plans with areas limited to 
50 or 90% of the area needed to meet  all goals revealed similarly 
small trade-offs (fig. S1).

We also examined the benefits of heuristic planning approaches 
such as designing management zones in spatial networks, a concept 
that has been applied to date through networks of protected areas 
(4, 14). We found that existing marine spatial management areas 
are expected to experience substantial change in species composi-
tion by the end of this century, including the extirpation of 29 ± 7% 
of existing species and overall 84 ± 2% species dissimilarity (Fig. 5) 
under a high greenhouse gas emissions scenario (RCP8.5). However, 

networks of management zones were expected to experience half 
the loss of species (16 ± 4%) and substantially less species turnover 
(11 ± 3% dissimilarity), as compared to individual management 
areas under the RCP8.5 scenario (P = 2 × 10−16, paired Mann-Whitney 
U test, n = 32; Fig. 5). Each network spanned a range of tempera-
tures, and species often shifted within rather than into or out of a 
network. Simulated networks revealed that network size and thermal 
range were both important for minimizing turnover (fig. S2). While 
corridors are central to conservation on land, stepping-stones of 
MPAs are important in the ocean because many species disperse as 
larvae in the water column.

While the reduction of local stressors can delay extirpation of 
local populations, such measures cannot maintain populations pushed 
far beyond their thermal tolerances. Instead, updating local conserva-
tion and management goals to adapt to change will often be neces-
sary. Our results suggest that explicit consideration of future species 
distributions, even in static ocean plan designs, can be an effective 
approach to adapt to shifting species. In particular, our finding that 
proactive plans require little additional designated area suggests that 
proactive planning need not involve substantial trade-offs for other 
ocean users or substantial opportunity costs in terms of additional 
ocean plan areas, thereby lowering potential barriers to implement-
ation. An additional benefit of planning for long-term shifts in spe-
cies distributions is that such plans may also be helpful for coping 
with seasonal, annual, and decadal shifts (21).

Our study tests the value of proactive planning from a biophysical 
perspective but does not represent all relevant steps or considerations 
for ocean planning, including stakeholder interactions or adaptive 
management to learn from experience, to address non–climate- 
driven changes in ocean biodiversity, or to address changing socie-
tal goals, technologies, and ocean uses (2, 13). Our evaluation also 
considers only three of the many (and growing) human ocean activities 
(22), although we note that the value of ocean planning often increases 
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Fig. 2. Comparison of present-only plans that only consider current condi-
tions (orange) and “proactive” ocean plans that also consider species redistri-
butions (purple). Success is expressed as the fraction of planning goals that are 
met by each plan at a given time. Thick lines show averages, thin lines show indi-
vidual projections, and shading shows ±1 SD across the projections from eight 
global climate models used for testing and two greenhouse gas emissions scenarios 
(RCP2.6 and RCP8.5).
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Fig. 3. Cost and impact on ocean plans that result from planning for future 
shifts in species distributions, as opposed to planning only for the present 
ocean state. (A) Fraction of each region included in conservation, fishing, or energy 
zones for proactive plans (blue colors) is only slightly higher than under present- 
only plans (warm colors). (B) Despite similar total areas, a substantial fraction of 
planning grids change zones between the two plans. Region abbreviations are 
defined in Fig. 1.
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as more activities are considered (6). Even with proactive planning, 
ecological and social surprises are inevitable and will require resil-
ient and adaptive systems informed by ongoing monitoring, evalu-
ation, and anticipation (13, 23, 24). For example, changes in ship 
traffic, water quality, habitat availability, population abundance, 

and other factors will also alter species ranges in the future, in addi-
tion to climate change impacts. Some of these may be predictable in 
a way that allows proactive planning similar to what we demonstrate 
for climate, while others will be surprises for which adaptive man-
agement, such as through dynamic ocean management, is the best 
or only realistic approach. We also note that the species habitat dis-
tribution projections that we used capture the major changes in bio-
geographic patterns that are expected in each region and exhibit good 
out-of-sample predictive skill (19), but do not reflect evolutionary pro-
cesses, acclimation, or potential changes in species interactions that 
may cause species to occupy new thermal conditions or disappear 
from previously occupied conditions. The projections also do not 
consider changes in salinity, oxygen, acidification, or primary pro-
ductivity that may further contract and fragment species geographic 
ranges (25). Global climate models do not resolve fine-scale ocean-
ographic features that may be important for modulating oceano-
graphic changes in some regions, particularly upwelling regions 
like the West Coast of the United States (26). However, ensem-
bles of global climate models help to bracket uncertainty in regional 
climate responses (26).

The ocean is changing rapidly, and warming is expected to con-
tinue (27). Climate change mitigation can substantially reduce the 
impact on ocean ecosystems and human activities, including the 
probability and magnitude of undesirable outcomes (27). However, 
major questions also surround how to adapt human activities—
from coastal infrastructure to shipping, aquaculture, conservation, 
fisheries, and other uses—to expected changes over the coming 
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(from top to bottom) curves that have no trade-off, a direct trade-off, and a concave trade-off (20). The main figure shows curves for the nine regions around North Amer-
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Fig. 5. Average ecological turnover across existing individual management areas 
or in networks by 2081–2100. Panels show turnover as  (A) fraction of species lost, 
(B) fraction of species gained, and (C) Sørenson dissimilarity. Beanplots show density 
distributions across projections from 16 global climate models under a low (RCP2.6) 
or a high (RCP8.5) emissions scenario. Thick lines show means within each group.
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decades. Resistance to proactive adaptation, however, can become 
the default when the benefits and costs are unclear. Our demonstra-
tion that ocean plans are more effective and can require few 
trade-offs among ocean activities when they consider shifting species 
distributions is a timely contribution to ongoing adaptation efforts 
and the transition toward ecosystem-based management. While 
complete climate-proofing is impossible, proactively planning for 
long-term ocean change across a wide range of sectors is likely to 
provide substantial benefits.

MATERIALS AND METHODS
Our overall approach was to simulate the ocean planning process 
for conservation, fishery, and offshore energy goals and then evalu-
ate these goals against future shifts in species habitat distributions. 
We conducted planning that only considered species’ current 
distributions (present-only) and planning that considered species 
current and future distributions (proactive). The sections below de-
scribe the input data (Resource distribution data), the planning and 
evaluation process (Marine spatial planning), and a comparison of 
networks of spatial management zones against shifts in species dis-
tributions (Analysis of management area networks).

Resource distribution data
Marine spatial planning integrates across sectors, and so, our meth-
ods are, by necessity, interdisciplinary. For simulating the marine 
spatial planning process, we used information on species distribu-
tions and on the distribution of wave and wind energy resources. 
Species habitat distributions were used for conservation goals (spe-
cies presence or absence) and fishery goals (species biomass), while 
wave and energy spatial distributions were used for energy goals.
Species habitat distributions
For species habitat distributions, we used an existing set of distribu-
tion projections for fish and invertebrates on the continental shelves 
of North America (19). The species habitat distribution models had 
been fit to species biomass data from 136,044 sampling events 1963–2015 
during scientific surveys in Canada and the United States by consid-
ering seasonal bottom and surface temperatures, annual minimum 
and maximum temperatures, seafloor rugosity, and sediment grain 
size. Model selection procedures had been used to trim the number 
of explanatory variables used for each species. The models consisted 
of two parts: a first part that projected probability of species occur-
rence and a second part that projected species biomass conditional 
on presence. The product of the two parts provided projections of 
biomass (19).

The species distribution models had been projected at a grid size 
of 0.05° longitude × 0.05° latitude under a low and a high greenhouse 
gas emissions scenario (RCP2.6 and RCP8.5) using ocean tempera-
ture projections from 16 global climate models (19). We randomly 
selected eight of the climate models, averaged them into ensemble 
means for present (2007–2020, both RCP2.6 and RCP8.5) and 
end-of-century (2081–2100, only RCP8.5) time periods, and used 
the ensemble means for ocean planning (table S1). We set aside pro-
jections under the other eight climate models across each of two 
RCPs for evaluating the ocean plans (table S1).

To match the spatial scale of the projections to the 0.25° ocean 
planning grid, we averaged probabilities of occurrence (for conser-
vation goals) or biomass (for fishery goals). We then converted 
probability of occurrence into projections of species presence and 

absence by applying a species-specific threshold that maximized Cohen’s 
kappa (28). Kappa measures the extent to which the agreement between 
observed and projected values is higher than expected by chance 
alone, considering both omission and commission errors (28).
Wave and wind energy
We used the InVEST (Integrated Valuation of Ecosystem Services 
and Trade-offs) 3.7.0 toolkit (29) to calculate the spatial distribution 
of offshore wind and wave power in each region. InVEST is a 
decision-support tool for ecosystem services that was developed 
for and is commonly used in marine spatial planning efforts (12, 29), 
including for wave and wind energy (30–32).

The InVEST Offshore Wind Energy Production tool estimates 
wind power density from data on wind statistics (a probability den-
sity of wind speeds) at each location and then uses wind turbine 
characteristics (hub height, cut-in wind speed, cut-out wind speed, 
rated power, rated wind speed, etc.) to calculate the harvestable en-
ergy (table S3) (30). We used global wind statistics at 30–arc min 
spatial resolution that are distributed with InVEST. These statistics 
were calculated from a global WAVEWATCH III hindcast reanaly-
sis of winds globally for 1999–2012 (30). We did not consider changes 
in energy resources over the 21st century because the anthropogenic 
climate change signal appears small relative to natural variability (33).

Harvestable energy was calculated for wind farms composed of 
16 turbines of 5.0  MW each. While wind farm designs can vary 
greatly in size and design (31), we chose a standard design to ensure 
comparability across different locations (table S3). A size of 16 turbines 
was chosen to achieve a density of approximately two per square 
kilometer, following proposals of this magnitude in the United 
States (6). Turbines were sited in locations 0 to 200 km from shore 
and 3 to 60 m depth using the ETOPO1 depth dataset (34) and a 
high-resolution global shoreline dataset (35). We used the default 
turbine design parameters distributed with InVEST for a 5.0-MW 
turbine. Last, installation and maintenance costs as well as electricity 
prices were used to calculate the net present value (NPV) of offshore 
wind at each location, following (31). The default costs included in 
InVEST were based on a detailed review of stated project costs from 
existing offshore wind development (31). Energy prices were set at 
$0.161/kilowatt-hour to match approximate wholesale energy prices 
in the United States, as has been used for other wind energy plan-
ning calculations (6). Overall, the offshore wind tool outputs a ras-
ter map of NPV across the continental shelf. The absolute values of 
these calculations are not of interest, but rather the relative value of 
one location compared to another so that areas particularly valuable 
to energy production can be designated for such uses.

Similarly, the InVEST Wave Energy Production tool estimates 
potential wave power from data on significant wave height and peak 
wave period and then calculates harvested wave energy from inform-
ation on the performance of wave energy conversion devices (32, 36). 
We used global wave statistics at 30–arc min spatial resolution that 
are also distributed with InVEST and that had been calculated from 
a global WAVEWATCH III reanalysis (36). We then calculated 
harvested energy from wave farms composed of 100 attenuator-type 
Pelamis wave energy conversion devices (table S3) (36). These de-
vices are in a relatively advanced stage of development (36), and so, 
they provide a consistent method for comparing wave energy 
potential across different locations. The number of devices was 
based on recommended densities in the literature (32). The tool 
then calculates the NPV of a wave energy conversion facility using 
information on the price of electricity, discount rate, and costs that 
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had been derived for a wave energy planning project on the West 
Coast of Vancouver Island (36). Because no commercial-scale wave 
energy projects currently exist, the economic parameters are uncer-
tain (32, 36). However, the calculations are useful for comparing the 
relative (not absolute) value of different ocean locations for wave energy 
capture, which is what we need for this ocean planning exercise.

Calculated NPV values for wind and wave energy were averaged 
separately within planning grid cells for incorporation into marine 
spatial planning. We then summed positive NPV values across 
wind and wave energy for a combined offshore energy NPV for 
each planning grid cell.

Marine spatial planning
Plan development
Marine spatial planning is a multi-stakeholder, multi-objective pro-
cess by which areas of the ocean are designated for different uses. 
Here, we simulated that process by defining three types of planning 
zones for our North American case study: fishery, conservation, 
and energy development. Fishery, conservation, and energy zones 
each had their own planning goals. Our approach implicitly assumed 
that fishery, conservation, and energy development are mutually 
exclusive ocean uses, although in reality, not all ocean uses are in-
compatible (2). Our planning units consisted of 14,588 grid cells at 
0.25° latitude × 0.25° longitude resolution across the continental shelves 
(Fig. 1). We divided these into nine regions (Fig. 1 and table S2), 
because ocean planning is typically conducted at a regional scale (2).

We set conservation zone goals to protect at least 10% of the 
occurrences of each species in a region, in line with the CBD’s Aichi 
Target 11 to protect at least 10% of coastal and marine areas by 
2020. We set conservation goals for all species present in at least 5% 
of the area of each region, which resulted in 29 to 165 conservation 
goals per region (table S2). We set fishery zone goals to protect at 
least 50% of the biomass of each of the top 10 fishery species in each 
region, inspired by simple fishery models that estimate maximum 
sustainable yield at 50% of unfished biomass. We defined the top 
fishery species in each region using fishery landings for 1995–2014 
by Large Marine Ecosystem (table S4) (37). Large fishery landings 
not only are a useful indicator of importance to fisheries but also 
identify species caught incidentally in large quantities, like arrow-
tooth flounder (Atheresthes stomias). In the energy zone, the goal 
was to include at least 20% of the total NPV from wind and wave 
resources in each region. This goal was inspired by the projection 
that the United States needs 781 GW of offshore wind turbines in-
stalled (of 4200 GW potential, i.e., ~20%) as part of a roadmap to 
100% clean energy (16, 17).

We simulated two different planning approaches. In the present- 
only approach, we developed plans that met our goals for the current 
distributions of marine animals. For consistency with our proactive 
approach (described next), we used species distributions (occur-
rence and biomass; see the “Resource distribution data” section) 
projected onto 2007–2020 temperatures as our current distributions. 
Occurrence information was used for conservation goals, biomass 
information was used for fishery goals, and the combined NPV of 
wind and wave energy was used for meeting energy goals.

In the proactive planning approach, we set goals for both the 
current (2007–2020) and the end-of-century (2081–2100) species 
distributions. We used ensemble projections under the RCP8.5 
greenhouse gas emissions scenario (a high emissions scenario). The 
proactive approach doubled the number of goals to be met in the 

conservation and fishery zones (i.e., both current and future distri-
butions for each species). We kept the energy goals the same be-
cause we did not project future wind or wave conditions.

After defining the input data and goals, we then solved the 
“minimum set problem” of allocating grid cells to conservation, 
fishery, or energy zones to meet the goals while minimizing the area 
of each zone. We solved the problem using prioritzr (38) in R v3.5.3 
(39) with the Gurobi solver v8.1.1 (40). Prioritizr uses integer linear 
programming (ILP) techniques to solve spatial planning problems. 
It is guaranteed to find optimal solutions given sufficient time and 
supports multiple zones. We specified an efficiency gap of 1% (fol-
lowing the program’s recommendations) and specified a uniform 
cost of including any planning grid cell in a zone. This choice was 
equivalent to assuming that the primary concern was minimizing 
the area included in conservation, fishing, or energy zones.
Plan evaluation
We then evaluated the present-only and the proactive marine spa-
tial plans in each region by testing whether each zoning goal (spe-
cies representation goals in conservation zones, percent of biomass 
in fishing zones, and percent of NPV in energy production zones) 
was met in future time periods as species habitat distributions shift-
ed. We evaluated each of the future climate scenarios in each time 
period independently against the same single set of goals (i.e., we 
tested whether each plan met conservation, fishing, and energy 
goals in a given time period). We considered a wide range of future 
scenarios in each region by using the 16 projected distributions for 
each species (i.e., for each of two RCPs in each of the eight global 
climate models reserved for testing; table S1) for 2021–2040, 
2041–2060, 2061–2080, and 2081–2100. This analysis approach 
allowed us to consider uncertainty in both emissions scenarios and 
climate models.

We used a generalized linear mixed model with binomial errors 
to test whether the proactive planning approach met more goals 
than the present-only approach

  ( numgoalsmet  p,g,r,m,d  ,  numtotalgoals  p,g,r,m,d   ) ~  plantype  p   +  region  g   /  
rcp  r   /  model  m   /  period  d    

The response variable was the proportion of goals met (coded as 
the number of goals met, numgoalsmet, and the total number of goals, 
numtotalgoals). The fixed effect was the planning approach (plantype). 
Random effects were time period (period) nested within climate model 
(model), nested within RCP (rcp), nested within region (region). We 
used the lme4 package v1.1-21 in R 3.6.1 to fit the model (39, 41).
Trade-off curves
We also calculated trade-off curves (Pareto efficiency frontiers) (20) 
between present and future planning goals for conservation and 
fishing by setting a constrained plan area such that all present and 
future goals could not be met. We set the constrained area (the 
“budget”) as 50, 75, or 90% of the total area needed to meet all con-
servation and fishing goals. The input data were the same as for the 
proactive planning approach described in the “Plan development” 
section, although for simplicity, we did not include energy goals. In 
other words, we used the ensemble mean species occurrence and 
biomass information for 2007–2020 and 2081–2100 (see the “Species 
habitat distributions” section).

We then used prioritizr to solve the “fixed budget problem” of 
meeting as many goals as possible, subject to the constrained area. 
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We ran prioritizr multiple times, each time applying a different set 
of weights to either future goals or present goals. The weights spec-
ified how important it was to meet future versus present goals. 
Weights for present goals were varied from 0 (no attempt to meet 
present goals) to 100, while weights for future goals were set as 100 
minus the weight assigned to present goals.

Analysis of management area networks
Existing management areas
To evaluate the climate sensitivity of existing marine spatial plans 
and the value of networks, we examined marine designations within 
the August 2019 version of the World Database on Protected Areas 
(WDPA) (42). These are not formal marine spatial plans, but they 
do represent areas of the ocean that have been set aside for particu-
lar purposes. The management areas included in this database have 
been designated for a wide range of purposes, including fishery 
management or conservation. The Greater Farallones National Ma-
rine Sanctuary in California, for example, regulates construction, 
discharge, and research activities but does not restrict fishing activ-
ities. The Great South Channel Restricted Gillnet Area in the North-
east United States restricts gillnet fishing gear in certain seasons but 
allows other kinds of fishing. The full set of areas, therefore, pro-
vides an example of regions of the ocean set aside for spatial man-
agement and helps provide an example of existing (although largely 
uncoordinated) efforts toward marine spatial planning in North 
America.

We then compared ecological turnover within individual man-
agement areas and within networks of management areas driven by 
shifting species distributions. Within each management area, we 
evaluated the fraction of species habitats that were lost from the 
initial (2007–2020) to final (2081–2100) time period, the fraction 
gained, and Sørenson’s similarity index between the initial and final 
species assemblages within each management area. Our input data 
were the high-resolution distribution projections described in the 
“Species habitat distributions” section above (0.05° × 0.05° for each 
global climate model and RCP).

We took a probability-based approach to these calculations to 
account for potential differences in scale between the projections 
and the reserves (43). We first calculated the probability (pi,t) of 
each species i appearing in each management area in time period t, 
accounting for the fact that a given management area might span 
portions of multiple species projection grid cells

   p  i,t   = 1 −   ∏ 
x=1

  
X
   (1 −  r  x    p  i,t,x  )  

where pi,t,x was the probability of species i being present in time 
period t in grid cell x, rx was the fraction of grid cell x contained 
within the management area, and X was the total number of grid cells 
overlapping the management area. The logic of this equation com-
bines two ideas. First, the probability of a species being present in an 
area smaller than a grid cell is equal to the proportion of the grid cell 
covered by the smaller area (rxpi,t,x) (43). Second, the combined prob-
ability of presence across multiple grid cells is the complement of the 
probability that the species is not present in any of the grid cells.

To test this approach, we compared our calculations against data 
on whether or not species had been observed in each management 
area during bottom trawl surveys 2016–2018 [i.e., data that were not 
used to fit species distribution models by (19)]. The trawl data were 

downloaded from OceanAdapt version 25 March 2019 (44). We 
calculated the fraction of management areas that were observed to 
have a species when it was predicted to be present [positive predic-
tive value (PPV), also called precision] and the fraction of manage-
ment areas that were not observed to have a species when it was 
predicted to be absent [negative predictive value (NPV)] (28, 45). 
We bootstrapped across management areas and species to derive 
SEs. We found relatively high values of both quantities, with 
PPV = 0.51 ± 0.007 (±1 SE) and NPV = 0.81 ± 0.009. These values 
compare favorably to distribution models for phytoplankton (PPV 
0.15 to 0.77 and NPV 0.7 to 1) and trees (PPV 0 to 0.6) (45, 46). 
Most management areas had only four or fewer sampling events 
(trawl tows) in our dataset (fig. S3A), increasing the chance that some 
observed absences were, in fact, presences (i.e., false absences). When 
we trimmed out management areas with few sampling events, PPV 
increased toward 0.8, although NPV also decreased somewhat (fig. S3B).

We then calculated the probabilistic number of species gained, 
lost, or shared within individual management areas between the 
first (2007–2020) and second (2081–2100) time period

   n  lost   =     
i∈{i∣ p  i,2  < p  i,1  }

  ( p  i,1   −  p  i,2  )  

                                 n  gained   =     
i∈{i∣ p  i,2  > p  i,1  }

  ( p  i,2   −  p  i,1  )  

                                 n  shared   =     
i=1

  
n
    p  i,1    p  i,2    

where n is the total number of species. From these, we then calculat-
ed the fraction of species lost, the fraction of species gained, and the 
Sørenson dissimilarity index

                              f  lost   =    n  lost   ─ 
  i=1  n    p  i,1  

    

                          f  gained   =   
 n  gained  

 ─ 
  i=1  n    p  i,2  

    

                                S = 1 −   2  n  shared    ──────────────  2  n  shared   +  n  gained   +  n  lost  
    

We then repeated these calculations of turnover statistics (gain, 
loss, and similarity) for networks of management areas. We defined 
three networks from the WDPA database: (i) areas in California managed 
by the California Department of Fish and Game (n = 55), (ii) areas 
in U.S. state waters east of 100°W (Atlantic Coast, n = 342), and (iii) areas 
in Alaska state waters (Alaska, n = 35). The California areas are managed 
together as a network (4), while we defined the other networks as illus-
trative sets potentially connected through species dispersal or range shifts.

For a statistical test of similarity within networks and within the 
individual management areas of those networks, we first averaged 
similarity within each management area or network across the 
RCPs and climate models. We then conducted a nonparametric 
Mann-Whitney (Wilcoxon two-sample signed rank) test of the null 
hypothesis that the two distributions share the same location with 
wilcox.test() in R 3.6.3 (39).
Simulated networks
Last, we simulated management networks in each region by randomly 
choosing 0.25° × 0.25° grid cells within each region to designate. 
The simulated networks were constrained to cover only a designated 
area (11 levels from 1 to 50% of the grid cells in each region) and to 
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span a limited range of temperatures (11 levels from 1 to 100% of 
the thermal range in a region). To define the thermal range and to 
guide site selection, we used the bottom temperature climatology 
for the North American continental shelf developed by Morley et al. 
(19). This climatology integrated data from the Simple Ocean Data 
Assimilation reanalysis product (47). We repeated the process of 
randomly selecting areas with a network three times at each combi-
nation of area and thermal range constraints, for a total of 363 random 
networks in each of the nine regions. We then evaluated ecological 
similarity between the beginning and end of the 21st century follow-
ing the procedure in the “Existing management areas” section.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/50/eabb8428/DC1
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