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expression via RNF39 will be a prime target for designing therapeu-
tic strategies for multiple diseases.

Self-nucleic acid–driven type I IFN production and inflammation 
play crucial or contributing roles in the initiation of autoinflamma-
tory and autoimmune diseases. For example, MDA5 gain-of-function 

mutants could cause a variety of autoimmune disorders, such as 
type 1 diabetes and SLE (34, 35). Genetic variant of RNF39 is asso-
ciated with autoimmune diseases, including SLE and MS (23–27). 
Deficiency of RNF39 promotes RLR activation and enhances type I 
IFN production. Thus, our data further imply the potential roles of 

Fig. 7. RNF39 promotes K48-linked ubiquitination of DDX3X. (A) Lysates from HEK293T cells transiently cotransfected with HA-Ub, Myc-DDX3X along with RNF39-Flag 
or RNF39 C108S-Flag, were subjected to immunoprecipitation with Myc antibody followed by immunoblot analysis with HA antibody. (B) Lysates from HEK293T cells 
transiently cotransfected with HA-Ub, Myc-DDX3X along with RNF39-Flag or RNF39 C108S-Flag, were subjected to immunoprecipitation with Myc antibody. The immuno
precipitates were denatured and re-immunoprecipitated with Myc antibody (two-step immunoprecipitation, Re-IP) and then analyzed by immunoblot analysis. 
(C) Re-IP analysis lysates from HEK293T cells transiently cotransfected with HA-Ub (WT and its mutants), Flag-RNF39, and Myc-DDX3X. (D) Immunoprecipitation analysis 
lysates from HEK293T cells transiently cotransfected with K48-Ub or K63-Ub mutant, Flag-RNF39, and Myc-DDX3X. (E and F) Lysates from Rnf39+/+ or Rnf39−/− mouse PMs 
infected with SeV for 8 hours were immunoprecipitated with DDX3X antibody, followed by immunoblot analysis with indicated antibodies. (G and H) Re-IP analysis 
lysates from HEK293T cells transiently cotransfected with HA-Ub, Flag-RNF39, along with Myc-DDX3X (WT and its point mutants). (I) Immunoblot analysis of extracts from 
HEK293T cells transfected with Myc-DDX3X or Myc-DDX3X K55/138/162R mutant, together with Flag-tagged RNF39 or RNF39 C108S expression plasmid. (J) Luciferase 
activity analysis of IFN- promoter activity in HEK293T cells transfected with IFN- reporter plasmid, together with empty vector control plasmid, Myc-DDX3X, or Myc-
DDX3X K55/138/162R mutant after being infected with VSV. Plasmid expression in the HEK293T cells was confirmed by immunoblot analysis. All data are represented as 
means ± SD. Significance was determined by unpaired two-tailed Student’s t test: **P < 0.01. All experiments were repeated at a minimum of three times.
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RNF39 in autoimmunity and suggest RNF39 as a priming target for 
the intervention of autoimmune diseases caused by excessive RLR 
activation.

In summary, we identified RNF39 as a suppressor of anti-RNA 
viral innate immunity by targeting the adaptor DDX3X. Because of 
the fundamental and complicated functions of RLR, fine-tuning of the 
nucleic acid–sensing pathway is critical for the viral disease resistance 
and maintenance of immune homeostasis. Our research uncovers a 
previously unknown regulatory mechanism of RLR pathway under 
physiological conditions. Furthermore, control of DDX3X expression 
by RNF39 will be a priming therapeutic strategy for the intervention 
of diseases with aberrant activation of innate immune responses.

MATERIALS AND METHODS
Study design
The aims of the study were to characterize the regulatory mecha-
nisms of DDX3X in the RLR signaling. The experiments and assess-
ment of outcomes were performed in a blinded fashion. Descriptions 
of experimental replicate are found in the figure legends and/or 
subsections of Materials and Methods.

Mice
Rnf39-deficient mice on C57BL/6 background were generated by 
CRISPR-Cas9–mediated genome engineering. C57BL/6 mice were 
from Vital River Laboratory Animal Technology Co. (Beijing, China). 
All animal experiments were undertaken in accordance with the 
National Institute of Health Guide for the Care and Use of Labora-
tory Animals, with the approval of the Scientific Investigation Board 
of School of Basic Medical Science, Shandong University, Jinan, 
Shandong Province, China.

Statistical analysis
Statistical significance between groups was determined by unpaired 
two-tailed Student’s t test and nonparametric tests. Statistical sig-
nificance in examining survival among Rnf39+/+ and Rnf39−/− mice 
was performed via the Kaplan-Meier survival by GraphPad Prism 
6.0. Values of P < 0.05 were considered to be statistically significant.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/10/eabe5877/DC1

View/request a protocol for this paper from Bio-protocol.
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