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DISCUSSION
The goal of this investigation is to identify strategies to overcome 
the transport barriers to the effective delivery of siRNA therapeutics 
in the brain TME. Although both viral and nonviral gene vectors 
can be used as a delivery vehicle for nucleic acids, viral vectors are 
limited by toxicity, immunogenicity, low loading capacity, and high 
production costs (51). Thus, in this study, we focused on siRNA 
nanoparticle formulations. As we alluded to, one of the key aspects 
of our study is the concurrent assessment of the nanoparticle pene-
tration and payload (siRNA) delivery in the brain TME at subcellular 
resolution using fluorescence microscopy (Cy5-siRNA) and FISH 
(SMO-siRNA). The latter allowed us to directly show, in an immu-
nocompetent animal, that MB-FUS siRNA delivery can reduce the 
oncogene driving the tumor and lead to a marked increase in cancer 
cell death and thus establish a causative relationship among changes 
in BBB/BTB permeability, nanoparticle/siRNA penetration and 
uptake, and tumor cell death. This is a major advancement as compared 
to previous investigations that have so far provided macroscopic 

evidence of successful transfection in the brain TME using luciferase 
plasmid DNA loaded to anionic nanoparticles (32). Moreover, the 
demonstrated high LPH:siRNA uptake by cancer cells into two sep-
arate preclinical models of malignant glioma and medulloblastoma, 
in combination with the high penetration across the BBB and BTB, 
underscores the potential of the proposed therapeutic strategy to tar-
get the tumor core and infiltrating margin, which currently remains 
inaccessible to therapy (15).

In addition, our combined experimental and modeling investi-
gations revealed that balancing the improved transvascular and in-
terstitial transport attained by MB-FUS with the high penetration 
and cancer cell uptake by 40-nm weakly cationic nanoparticles is 
critical for robust delivery and uptake in the brain TME. These 
findings, which depart significantly from current approaches that 
are based on 50- to 100-nm polydisperse, anionic nanoparticles 
(<−5 mV), provide a paradigm shift in drug delivery in brain tumors, 
where physical methods and nanotechnology are tuned together to 
systematically identify optimal FUS drug combinations and develop 

Fig. 6. Integrated quantitative microscopy and PBPK modeling guides the integration of LPH nanoparticles and MB-FUS technologies. (A) Parameter identifica-
tion procedures to recover LPH pharmacokinetics from the experimentally determined RhoB-LPH penetration (line profile perpendicular to vessel wall, left) in the GL261 
glioma tumor model using 2D tumor cord geometry. The model output and the reference solutions agreed (right). (B) Normalized parameter fit for non–FUS-treated and 
FUS-treated groups using 2D tumor cord PBPK model. (C) Structurally heterogeneous modeling of LPH transport in TME. (D) Sensitivity analysis of the model parameters. 
(E) Cellular uptake of LPH with different sizes for non-FUS and FUS. (F) Transvascular flux with different surface charge LPH for non-FUS and FUS. †Difference between 
different LPH sizes for non-FUS and FUS (one-way ANOVA). *Difference between non-FUS and FUS for each LPH size or surface charge (unpaired t tests). Extracellular LPH 
concentration (Ce) and intracellular LPH concentration (Ci) normalized to maximum LPH concentration inside the vessel (Cv). Dv, vessel diffusion coefficient; Di, interstitium 
diffusion coefficient; Kv, vessel hydraulic conductivity; Ki, interstitium hydraulic conductivity; V, rate of endocytosis. The plots show means ± SEM (N = 3). In (B) and (C), the 
P values were determined by unpaired t tests. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001, ††P ≤ 0.01, †††P ≤ 0.001, ††††P ≤ 0.0001.
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rational strategies for the effective delivery of nucleic acids in brain 
tumors. While additional experimental data using nanoparticles of 
different size and surface charge will further consolidate the ob-
served trends, our findings (Fig. 5) provide a plausible explanation 
for the lower drug delivery observed in past investigations using 
larger nanoparticles (50 to 100 nm), as compared to the present data 
(>10-fold versus 3.7-fold median increase in delivery after MB-FUS 
compared to non-FUS; table S1). These findings can potentially be 
improved, including cell specificity, by surface functionalization. 
Increasing the sample size of each experimental group (table S2) 
will allow to assess further the reproducibility of our findings and 
better assess how tumor heterogeneity affects the proposed thera-
peutic strategy. Although past biodistribution and toxicity investi-
gations of lipid nanoparticles with similar dosage to the one that we 
used in this study reported negligible toxicity (41–43), future stud-
ies in evaluating treatment outcomes (tumor growth and survival) 
in patient-derived tumors with and without known driver muta-
tions, combined with extended toxicologic analysis under different 
LPH:siRNA doses, are warranted. Testing additional FUS exposures 
(e.g., lower harmonic emissions), ideally under closed-loop control 
(52–55), combined with a more detailed assessment of the BBB phe-
notype (i.e., structure and function) and brain/tumor tissue (56, 57) 
will allow to further define and refine the MB-FUS treatment window 
for safe and effective siRNA delivery in the brain TME.

Collectively, our findings demonstrate the potential of our work 
to lead to the development of rational strategies for the effective de-
livery of nucleic acids in brain tumors and provide a unified frame-
work for prospective, quantitative, and mechanistic investigation of 
siRNA delivery in brain TME. The principles established here can 
also be extended to target more than one part of a signaling pathway 
such that its knockdown affects survival/growth (58, 59), overcome 
problems with drug resistance (60), and create unique opportuni-
ties for delivering shRNA, antisense RNA, or CRISPR-Cas9 (2, 61) 
and enhancing immunotherapy.

MATERIALS AND METHODS
LPH:siRNA fabrication and characterization
Cationic LPH (40 nm diameter) was prepared using a slightly mod-
ified swirling microvortex reactor (38). Briefly, a solution containing 
poly(d,l-lactic-co-glycolic) acid (PLGA) (0.3 mg/ml) in acetonitrile 
and another solution containing 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC) (0.018 mg/ml), 1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (0.015 mg/ml) 
(Liss Rhod PE), N1-[2-((1S)-1-[(3-aminopropyl)amino]-4-[di(3-amino-
propyl)amino]butylcarboxamido)ethyl]-3,4-di[oleyloxy]-benzamide 
(MVL-5) (0.02 mg/ml), and 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] 
(DSPE-PEG) (0.02 mg/ml) in 4% ethanol were introduced into the 
swirling microvortex reactor at a Reynolds number of 250. All these 
parameters were adjusted to yield 40-nm-sized particles. The pre-
pared particles were filtered and centrifuged at 2900 rpm for 15 min 
three times to remove any impurities.

The technique used for loading siRNA onto LPH is similar, 
although the precursors used are not the same as the siRNA is a 
charged molecule. The polymer core used is PLGA, while the lipid 
precursors used are DPPC, Liss Rhod PE, DSPE-PEG, and MVL5. 
The cationic LPHs were mixed with the siRNA at a ratio of 5:1 (w/w) 
under vigorous vortexing, which allowed optimal siRNA loading 

onto the LPHs. Two different siRNAs used in this study were 
purchased from Horizon Discovery (Dharmacon, Lafayette, CO): 
Cy5-siRNA (siSTABLE nontargeting; catalog no.: D-001700-01) and 
SMARTpool (a mixture of four siRNAs; catalog no.: L-041026-00-0020) 
ON-TARGETplus SMO-targeting siRNA. siRNA sequences are 
provided in the Supplementary Materials.

The hydrodynamic volumes and surface charge of the cationic 
LPH and LPH:siRNA was obtained with Zetasizer Nano (Malvern 
Instrument, Malvern, UK). The morphology of samples was taken 
from a transmission electron microscope (Hitachi 7700, Hitachi, 
Japan) at 120 kV coupled with a Digital Micrograph camera and 
software suite from Gatan. The samples were negatively stained 
with 2% uranyl acetate solution for 30 s.

Culture of GL261 cells
GL261-luc2 glioma cells (Caliper Life Sciences) were cultured in 
Dulbecco’s Modified Eagle’s Medium supplemented with 10% fetal 
bovine serum and 1% penicillin-streptomycin at 37°C and 5% CO2.

Quantification of cellular uptake kinetics of nanoparticle 
into GL261 glioma cells
GL261 cells were seeded at a density of 20,000 cells/ml in a glass 
bottom dish (MatTek, catalog no. P35GCOL-1.5-14-C) over a period 
of 24 hours, which resulted in 60% confluency. At that point, the 
cells were incubated with cationic LPH:Cy5-siRNA at a concentra-
tion of 0.02 mg/ml and the intracellular fluorescent signal of the 
nanoparticles was measured at five different time points (2, 4, 6, 8, 
and 10 hours) using fluorescent microscopy. At the end of each 
time point, cell viability was determined by counting total versus 
dead cells using a cell viability kit according to the manufacturer’s 
instructions (ReadyProbes Cell Viability Imaging Kit, Blue/Green, 
Thermo Fisher Scientific, catalog no. R37609). The quantification 
of the fluorescence intensity of LPH and Cy5-siRNA at different 
time points was determined using ImageJ.

GL261 glioma cell inoculation
All animal procedures were performed according to the guidelines 
of the Public Health Policy on the Humane Care and Use of Labo-
ratory Animals and approved by the Institutional Animal Care and 
Use Committee of Georgia Institute of Technology. GL261 cells 
(105 cells), genetically modified to express firefly luciferase, were 
stereotactically implanted into the brain at 1-mm anterior and 
1 mm to the right of the bregma of 6- to 8-week-old female C57BL/6J 
mice (The Jackson Laboratory) (15 mice). After cell implantation, 
tumor growth was monitored using T2-weighted MRI (PharmaS-
can 7T, Bruker), and when tumors reached a size of ~20 to 40 mm3, 
BBB disruption was performed using a custom-built MRgFUS. To 
minimize differences in the (baseline) BBB permeability across dif-
ferent experimental arms, related to differences in tumor sizes, 
before each experiment, the tumors were measured with MRI and 
spread equally between control and FUS-treated groups.

Medulloblastoma tumor model
We used the SmoA1 transgenic mouse model of human SHH-type 
medulloblastoma (008831, The Jackson Laboratory). SmoA1-Math1-
GFP mice were generated by crossing SmoA1 mice with Math1-driven 
GFP reporter mice. The mice were maintained in Emory University ani-
mal facilities, approved by the American Association for Accreditation 
of Laboratory Animal Care. When the mice reached 10 to 12 weeks old, 
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we confirmed the growth of the tumor using MRI and enrolled the 
mice in the study.

MRgFUS system and sonication of GL261 tumor
The MRgFUS system is composed of an air-backed spherically 
curved transducer (frequency: 0.5 MHz, F-number: 0.70, focal dis-
tance: 25 mm) that is attached to a water-filled three-dimensionally 
(3D) printed cone with an exit window made of thin Mylar mem-
brane. The system is mounted with a surface coil on a manual 3D 
positioning system that, under MRI guidance, allows to sonicate 
different brain targets with millimeter targeting precision. At the 
sonication experiments, the following exposure settings were used: 
10-ms bursts, every 1 s for 1 min, with concurrent intravenous 
administration of clinical-grade MBs (100 l/kg; Optison). A 475-kPa 
peak negative pressure (based on free-field measurements—water) 
was used throughout the present study. To cover the entire tumor 
and its periphery, we performed four nonoverlapping sonications 
(X-Y directions). Before the sonications, the tumor location was 
identified using T2-weighted MRI of the entire brain. Immediately 
after the sonication, the animals were injected with gadolinium 
contrast agent (Magnevist, 0.4 ml/kg) and T1-weighted contrast-
enhanced MRIs were acquired to confirm BBB disruption at the 
tumor and surrounding healthy tissue. After BBB disruption was 
confirmed, the nanoparticles were intravenously administered, and the 
animals were euthanized at 10-min (for LPH) or 8-hour (LPH:siRNA) 
nanoparticle injection. Last, the brain was harvested for further 
processing.

USgFUS system and sonication of medulloblastoma tumor
To perform the BBB disruption in medulloblastoma tumors, we 
used a custom-built portable USgFUS system with high targeting 
accuracy and real-time monitoring of MB dynamics via passive cavi-
tation detection (PCD). First, the USgFUS system creates a 2D con-
tour of the mouse head by raster scanning a single-element imaging 
transducer (3.5 MHz) mounted on a 3D positioning system. This 
image is then used to estimate the locations of the eyes, which is 
then compared with an MRI image to locate the tumor. The system 
then allows to perform sonication at four nonoverlapping areas to 
cover the entire tumor with a coaxial therapeutic FUS transducer 
(0.5 MHz). During sonication, the imaging transducer is switched 
to passive mode to capture MB’s response, whose frequency spec-
trum is then normalized to the mean of spectrum recorded before 
MB arrival to remove unnecessary emissions other than the MB 
response (fig. S4). Harmonic, ultraharmonic, and broadband levels 
were obtained by taking the mean of ±5 frequency bins from each 
harmonic frequency—3f0, 2.5f0, and 6.72f0, respectively. PCD during 
BBB disruption experiments allowed us to capture the onset of har-
monic emissions and ensure safe and effective disruption.

Brain tissue processing
In the group of animals that were euthanized at 10 min after nano
particle administration, the brains were harvested without transcardial 
perfusion. The animals that were euthanized at 8 hours (glioma 
tumor–bearing mice) and 30 hours (medulloblastoma tumor–bearing 
mice) after nanoparticle administration were transcardially per-
fused with 20 ml of saline before harvesting the brains. The brains 
were fixed with 4% paraformaldehyde overnight at 4°C followed by 
30% sucrose solution (4°C) until it sunk to the bottom of the con-
tainer. The brains were placed in O.C.T. (optimal cutting temperature) 

compound and rapidly frozen to −80°C. Subsequently, 30-m 
sections were cut using a cryostat (Leica 3050 S Cryostat).

Immunofluorescence staining and microscopy
Tissues were first prepared for staining by fixing in 4% paraformal-
dehyde at room temperature for 10 min. After washing with phosphate-
buffered saline (PBS), the sections were first blocked for 1 hour at 
room temperature (2% bovine serum albumin and 5% goat serum 
in PBS) and then incubated with primary antibody diluted in 1% 
bovine serum albumin (1:100) for 12 hours at 4°C. Rabbit anti-
mouse CD31 (ab28364, Abcam Inc.) was used for vessel staining, 
and rabbit anti-firefly luciferase (ab21176, Abcam Inc.) was used for 
the staining of the GL261 cells. Next, the sections were incubated 
with goat anti-rabbit Alexa Fluor 488 secondary antibody diluted in 
1% bovine serum albumin (1:250; A31556, Invitrogen) for 1 hour at 
room temperature. To stain the cell nucleus, samples were incubated 
with DAPI diluted in PBS (1:1000; 62248, Invitrogen) for 10 min 
after washing. Last, the sections were rinsed with PBS to remove 
excess antibody, mounted with mounting medium (Prolong Glass 
Antifade Mountant, lot no. 2018752, Invitrogen), and covered with 
coverslips. Samples were cured with a mounting medium for 24 hours 
in the dark at room temperature before imaging. At the same time, 
H&E staining was also performed to confirm the location of the 
tumor (fig. S2).

The sections were imaged with a 20× objective using a laser 
scanning confocal microscope system (LSM 700, Zeiss). The exci-
tation wavelengths used for cell nucleus, vessel/cancer cell, cationic 
LPH, and siRNA are 405, 488, 555, and 639 nm, respectively. The 
quantification of the fluorescence images was performed using 
ImageJ. The penetration of LPH and siRNA was quantified by inte-
grating the fluorescence signal using thin layers (2 m) perpendicular 
to the vessels using a custom-built MATLAB code.

FISH assay
Four DNA oligo probes with Cy5 fluorophore were used to detect 
SMO-siRNA. One DNA oligo probe with Cy3 fluorophore was used 
to detect nontargeting siRNA. The probes were dissolved in Tris-
EDTA (TE) buffer at pH 8.0 to make 100 M stock solution.

The fixed tissue samples were permeabilized in 70% ethanol 
at −20°C for 24 hours. After permeabilization, the samples were first 
scanned using Nikon Ti2 microscope with 20× objective lenses, and 
small areas were scanned with 60× objective lenses. The samples 
were then washed with 2× SSC and then incubated in wash buffer 
(30% formamide) at room temperature for 5 min. After the wash 
buffer was aspirated, the samples were then incubated in 1 ml of 
hybridization solution (hybridization buffer: 30% formamide and 
10% dextran sulfate; dilute probe stock solution in hybridization 
buffer to prepare hybridization solution; 1 l of each probe stock for 
SMO-siRNA and 2 l of probe stock for nontargeting siRNA) in 
humidification chamber at room temperature for 24 hours. Then, 
the samples were incubated in wash buffer for 5 min. To stain the 
nucleus, the samples were incubated in DAPI dilution in 2× SSC 
(1:500) for 5 min. The samples were then washed with 2× SSC three 
times to remove excess probes. Last, the samples were mounted in 
mounting buffer (tris-HCl, 8% glucose, 1:100 catalase, Pyox mixed 
at a ratio of 7:1:1:1) and imaged using Nikon Ti2 microscope. The 
excitation wavelength of DAPI, GFP-positive cells, LPH, and FISH 
probe for SMO-siRNA was 395, 470, 555, and 640 nm, respectively. 
The excitation wavelength of the nontargeting siRNA probe was 
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555 nm. More detailed information is provided in the Supplemen-
tary Materials.

Cell apoptosis detection
To access the ex vivo cell death, we used frozen brain tissue and then 
stained for the cell death marker CC3 (9661, Cell Signaling Tech-
nology) and TUNEL assay (C10619, Invitrogen) following the protocols 
provided by the manufacturers. The fraction of CC3- and TUNEL-
positive cells that are also LPH positive in the tumor (normalized to 
DAPI staining) is quantified using custom-built MATLAB code.

Immunohistochemical staining
Tissues were first prepared for staining by fixing in 4% paraformalde-
hyde at room temperature for 10 min and then washed with PBS. Af-
ter neutralization of the endogenous peroxidase with 3% H2O2 for 
10 min, the sections were incubated with protein blocking buffer for 
10 min before undergoing incubation with the primary antibody. 
Anti-SMO (E-5: sc-166685, Santa Cruz Biotechnology Inc., Dallas, TX) 
staining was developed using DAB (3,3′-Diaminobenzidine) (Vector 
Laboratories, Burlingame, CA) followed by hematoxylin counter-
staining (MilliporeSigma, St. Louis, MO). H&E staining was also per-
formed to access the location of the tumor (fig. S6). The SMO protein 
intensity inside the brain tumor was quantified using ImageJ.

Mathematical modeling of nanoparticle transport 
in brain TME
To quantify the transport parameters before and after FUS treat-
ment, we used a PBPK model using 2D tumor cord geometry (Fig. 6A). 
This model consists of a luminal area, vascular wall, and interstitial 
space, as shown before (23). Briefly, the model fully couples the dif-
fusive and convective transport of the nanoparticles through the 
bloodstream and across the endothelium into the interstitial space 
along with their uptake by tumor cells. The blood inside the vessel 
is simulated as a laminar flow with the Stokes equation. The fluid 
flow through the vascular wall and interstitial space, which are con-
sidered as a porous medium, is modeled using the Brinkman equation. 
The transport of nanoparticles is modeled as a convection-diffusion 
problem in the luminal subdomain and a reaction-convection-
diffusion problem in the interstitial subdomains. We define the extra-
cellular concentration of any agent as a continuous scalar field relative 
to a peak concentration in the bloodstream inside the vessel. Blood 
and interstitial fluid are assumed to be homogeneous, Newtonian, and 
incompressible fluids with constant viscosity.

Experimentally measured LPH concentration is used as a boundary 
concentration at the luminal inlet (Fig. 2D), and outflow with Neumann 
boundary conditions is applied to the rest of the boundaries of the 
computational domain. The parameters of the mathematical model, 
including vessel and interstitial diffusion coefficient (Dv and Di), 
vessel and interstitial hydraulic conductivity (Kv and Ki), and cellu-
lar transmembrane transport (V), were fitted using a numerical op-
timization procedure based on initial reference values taken from 
the literature (table S3) and experiment-specific objective function.

Because of the unavailability of experimentally measured LPH 
pharmacokinetics, we devised a procedure to recover LPH pharma-
cokinetics in the interstitium based on the experimentally deter-
mined LPH penetration data (Fig. 6A). For each experiment, we 
determined the relative extracellular LPH concentration at 15 m 
from the vessel and 10 min after LPH administration based on the 
experimental data of LPH delivery in the GL261 glioma model 

(Fig. 6A). The objective function for each experiment is generated 
on the basis of the average of LPH penetration at three randomly 
chosen locations inside tumor. We assumed that the dynamics are 
governed by the analytic solution of a 1D advection-diffusion prob-
lem with only one transport parameter, D, that describes the overall 
rate of LPH transport as follows: ​​C(x, t ) = ​C​ 0​​​(​​1 − erf​(​​ ​  x _ 

​√ 
_

 4Dt ​
​​)​​​)​​​​, where 

C0 is the experimentally measured LPH concentration in the blood-
stream. D is determined using the LPH concentration at 15 m 
from the vessel and 10 min after administration (Fig. 6A). Overall, 
six models were fitted comprising three repetitions of each class of 
experiment: non-FUS versus FUS.

To study the influence of the spatial structural heterogeneity of 
the brain TME on the interstitial drug transport, we used a synthetic 
tumor-like vascular network geometry. Briefly, the transvascular 
fluid transport is modeled using Starling’s law, assuming no osmot-
ic pressure difference (50), while the flow inside interstitial space is 
modeled with Darcy’s law. The anticancer agent transport in the 
luminal subdomain is modeled as a convection-diffusion problem 
and a reaction-convection-diffusion problem in the interstitial sub-
domain, as described for the 2D tumor cord model. To study the 
effect of size and surface charge on LPH cancer cell uptake and 
transvascular flux, we adjusted hindrance to both diffusive and con-
vective transport across the vessel wall (Supplementary Materials). 
Last, we incorporated the size-dependent rate of endocytosis based 
on the experimental data from the literature (62–64).

Using this model and the identified parameters using the pro-
cedures described above, we performed a sensitivity analysis to 
determine the rate-limiting factors in the nanoparticle transport 
and cellular uptake with and without FUS (three per group). This is 
performed by numerically approximating the derivative of the 
intracellular agent concentration C with respect to any transport 
parameter Pj, i.e., ​​ ∂ C _ ∂ ​P​ j​​

​​. To be able to compare the sensitivities to dif-
ferent parameters, we used the following normalized measure of 
sensitivity ​S  = ​   ​​ j​​ _ max(C)​ ​ 

∂ C _ ∂ ​P​ j​​
​​, where j is the SD of Pj across the four rep-

etitions of each experiment class and max(C) is the peak intracellu-
lar concentration measured. S should be interpreted as the relative 
change in C for a given change of Pj that is equally likely for all j. To 
study the effect of particle size and surface charge on the intracellu-
lar uptake and transvascular flux, we varied the hindrance factor. A 
more rigorous description of the PBPK model and the method used 
is provided in the Supplementary Materials. All the simulations 
were performed using the commercial finite element software, 
COMSOL (version 5.3a, Burlington, MA, USA), where necessary 
equations were added using the Mathematics module.

Statistical analysis
Results are expressed as means ± SEM. All statistical analyses were 
performed using GraphPad Prism. P < 0.05 was considered statisti-
cally significant.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/18/eabf7390/DC1

View/request a protocol for this paper from Bio-protocol.
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