The photoluminescence of metal nanoclusters is typically low, and phosphorescence emission is rare due to ultrafast free-electron dynamics and quenching by phonons. Here, we report an electronic engineering approach to achieving very high phosphorescence (quantum yield 71.3%) from a \([\text{Au@Cu}_{14}(\text{SR})_{12}(\text{PPh(C}_2\text{H}_4\text{CN})_2)_6]^{+}\) nanocluster (abbreviated \(\text{Au@Cu}_{14}\)) in non-degassed solution at room temperature. The structure of \(\text{Au@Cu}_{14}\) has a single-Au-atom kernel, which is encapsulated by a rigid Cu(I) complex cage. This core-shell structure leads to highly efficient singlet-to-triplet intersystem crossing and suppression of nonradiative energy loss. Unlike the phosphorescent organic materials and organometallic complexes—which require de-aerated conditions due to severe quenching by air (i.e., \(\text{O}_2\))—the phosphorescence from \(\text{Au@Cu}_{14}\) is much less sensitive to air, which is important for lighting and biomedical applications.

RESULTS AND DISCUSSION

Crystallographic structure of \(\text{Au@Cu}_{14}\)

The \([\text{Au@Cu}_{14}(\text{SR})_{12}(\text{BCPP})_6]^{+}\) NC [abbreviated \(\text{Au@Cu}_{14}; \text{counterion, SbF}_6^{-}; \text{SR, 4-} \text{tert-} \text{butyl-} \text{benzenethiolate (SPhBu)}; \text{BCPP, bis(2-cyanoethyl)-} \text{phenylphosphine}]\) was prepared by mixing NaAuBr4·3H2O, Cu(NO3)2, and PPh(C2H4CN)2 and then reduction by NaBH4. The red crystals of \(\text{Au@Cu}_{14}\) were dissolved in CH2Cl2/ n-hexane (see the Supplementary Materials for details).

The red crystals of \(\text{Au@Cu}_{14}\) were dissolved in CH2Cl2 for spectral measurements. Prominent absorption peaks were observed at 410, 455, and 514 nm (fig. S1A). Electrospray ionization mass spectrometry (ESI-MS; positive ion mode) indicates partial detachment of the BCPP ligands (fig. S1B). The peak corresponding to intact \(\text{Au@Cu}_{14}\) (cal. 4367.35 Da) shows an isotopic pattern in good agreement with the simulated one (fig. S1B, inset). This confirms the absence of the metal kernel size would be a single atom, which would permit simpler yet more effective engineering of the electronic radiative and nonradiative pathways; however, NCs with single-metal-atom kernels have not been reported so far. Moreover, the mechanism for photoluminescent NCs is not yet fully clear.

Here, we report a highly phosphorescent NC: \([\text{Au@Cu}_{14}(\text{SR})_{12}(\text{PPh(C}_2\text{H}_4\text{CN})_2)_6]^{+}\) (abbreviated \(\text{Au@Cu}_{14}\)) via engineering the ground and excited states through atomic structure control. The cluster has a single-atom (Au) core and an exterior large Cu(I) complex cage. Such a construct drastically enhances singlet-to-triplet transfer and also suppresses the vibrational energy loss, hence, achieving an extraordinary 71.3% QY of room temperature phosphorescence in ambient solution. Because of the protection of the triplet-state wave function by the \(\text{Cu}_{14}\) cage, the phosphorescence of \(\text{Au@Cu}_{14}\) is much less sensitive to air (i.e., \(\text{O}_2\)) compared to typical phosphorescent metal complexes. The strategy of single-heavy-atom core and encapsulation with a rigid cage is promising for future design of highly phosphorescent NCs for practical applications such as LEDs, high-resolution optical nanoprobes, and anticounterfeiting.
of hydrides (H^-) in the cluster; notably, the presence of hydrides is quite common in Cu NCs (24), but hydrides cannot be identified by x-ray crystallography. The Au@Cu_{14} NC has two free valence electrons: $1\text{(Au)} + 14\text{(Cu)} - 12\text{(SR)} - 1\text{(charge)} = 2\text{e}$. For comparison, X@Cu_{14} (X = mixed Au/Cl) and the Cl@Cu_{14} counterparts were also synthesized and structurally determined by a similar method (see fig. S2 and the Supplementary Materials) as that of Au@Cu_{14}. In the crystal of X@Cu_{14}, the central atom is partially occupied by Au or Cl. Except the central atom, X@Cu_{14} and Cl@Cu_{14} are the same as Au@Cu_{14} including the types and numbers of ligands and the charge state (+1, counterion = SbF$_6$). Both X@Cu_{14} and Cl@Cu_{14} were characterized by ultraviolet-visible (UV-vis) and ESI-MS (fig. S1, C to F). Notably, Cl@Cu_{14} has no free electron: $14\text{(Cu)} - 1\text{(Cl)} - 1\text{(charge)} = 0\text{e}$.

The structure of $[\text{AuCu}_{14}(\text{SR})_{12}(\text{BCPP})_{6}]^+$ (Fig. 1A) can be divided into a single-Au-atom kernel and a large $[\text{Cu}_{14}(\text{SR})_{12}(\text{BCPP})_{6}]$ exterior cage (Fig. 1B). There are two categories of Cu atoms in the Cu_{14} cage: a Cu_8 cube composed of eight inner Cu atoms (green) and a Cu_6 octahedron composed of six outer Cu atoms (brown). Each of the six squares of the Cu_8 cube is capped with a Cu(SR)$_2$(BCPP) mount motif (Fig. 1C). The Cu(I)···Cu(I) distances between cubic Cu sites are in the range of 2.975 to 3.296 Å, much longer than Cu···Cu bond lengths of ~2.64 Å in icosahedral or cuboctahedral Cu$_{13}$ cages (24, 26) or bulk Cu. Thus, no metal-metal bond exists in the Cu_{14} cage [i.e., a cage of Cu(I) complex]. The Cu(I) oxidation state is further verified by x-ray photoelectron spectroscopy (XPS) analysis by comparing the Cu XPS signal from Au@Cu_{14} with that of Cu(I)-SR (fig. S3). The Cu_8 cube wraps a single-Au-atom kernel, resulting in a body-centered cubic Au@Cu$_8$ structure (Fig. 1D), in which the average Au···Cu bond length is 2.708 Å, indicating strong interactions between the central Au and Cu$_8$ cube.

PL of Au@Cu_{14}

Au@Cu_{14} exhibited an intense PL at ~625 nm (Fig. 2) at room temperature under ambient conditions (non-degassed), and the QY was measured to be 71.3% with rhodamine B in ethanol as the standard (31). The excitation spectrum monitored at 625-nm emission (Fig. 2A, black line) is almost identical to the absorption spectrum of Au@Cu_{14} (fig. S1A), and the Stokes shift is smaller than the d$_{10}$ complexes of similar size (Stokes shift > 200 nm) (23, 32), indicating that the PL properties of Au@Cu_{14} are different from those of Cu(I), Au(I), or Cu(I)/Au(I) complexes (6, 33–35) but similar to metal NCs with free electrons, such as $[\text{Au}_2\text{Cu}_{12}(\text{SR})_6(\text{PPh}_3py)_2\text{Br}_4]^{3+}$ (6 e) (36) and $\text{Au}_2\text{Cu}_4(\text{SR})_6(\text{PPh}_3py)_2$ (2 e) (37). The emission peak position (~625 nm) of Au@Cu_{14} is independent of the excitation wavelengths (Fig. 2A, color lines), suggesting that the PL of Au@Cu_{14} originates from the same excited state (vide infra).

The Au@Cu_{14} powder also showed ultrabright emission (Fig. 2B, inset), and the emission peak (~630 nm; Fig. 2B) is slightly red-shifted compared to that of the solution spectrum. Temperature-dependent (300 to 80 K) measurements on the Au@Cu_{14} solid showed small redshifts of PL by up to 18 nm (Fig. 2C), in which the emission was enhanced by 1.3 times. The observation of small redshift from solution to solid phase and from room temperature to 80 K indicates a slight increase of energy gap between singlet state (S_1) and triplet state (T_1). Moreover, the small peak shifts further differentiate Au@Cu_{14} from metal(I) complexes; for example, the $[\text{Cu(py)}]_{14}$ complex showed emission maximum at 585 nm in solids but drastically shifted to 698 nm in toluene (38). The Au(I) complexes typically show >100-nm emission peak shifts from solution to solid (39). Such large shifts in metal(I) complexes can be explained by large structural changes that take place in solution, but the solid state often involves metal(I)···metal(I) interactions. Moreover, the Cu(I) complexes usually exhibit luminescence thermochromism due to the notably shortened Cu(I)···Cu(I) distance upon decreasing the temperature (5, 40, 41), but this is not the case in Au@Cu_{14}, indicating different electronic pathways.

As indicated by the small shifts in emission peak from the solution to solid state at room temperature, as well as from ambient to cryogenic temperatures, the structural change upon excitation should be rather small for Au@Cu_{14}. We ascribe this phenomenon to the rigid Cu_{14} cage composed of an inner Cu_8 cube and an outer Cu_6 octahedron that are tightly connected together by the S atoms of thiolates, and the central single-Au-atom further contracts the cubic Cu_8 into a compact structure. For each of the cubic Cu atoms (Fig. 1B), the µ$_4$ coordination favorable to Cu(I) with complete filling of d orbital is achieved by coordinating with three S atoms and the central Au (42). Such a rigid structure greatly restricts the intramolecular motion and thus reduces the nonradiative energy loss, even in solution phase under ambient conditions. Therefore, the single-gold-atom kernel plays an important role in stabilizing the large Cu_{14} cage.

We further provide three more perspectives for understanding the PL mechanism in Au@Cu_{14}, including (i) the heavy-gold-atom influence on the triplet state, (ii) singlet oxygen ($^1\text{O}_2$) generation, and (iii) ultrafast electron dynamics, as discussed below.

Single-atom kernel of Au@Cu_{14}

The role of the central Au atom is elucidated by replacing Au with Cl to give rise to a Cl@Cu_{14} complex with no free electron. As the structures of Au@Cu_{14} and Cl@Cu_{14} are almost the same, the central position is occupied by Au or Cl with an atomic ratio of 0.38:0.62 in the crystal of X@Cu_{14}. We found that the ambient QY in solution decreases from 71.3% of Au@Cu_{14} to 56.8% of X@Cu_{14} and to 41.8% of Cl@Cu_{14} (Fig. 3A). The QY is roughly proportional to the ratio of Au/(Au + Cl) as shown in Fig. 3B.

The presence of free valence electron in metal NCs often leads to PL quenching. For example, $[\text{Ag}_2\text{S}_1\text{S}_3(\text{SR})_2]^{3+}$ (0 e) was luminescent (43), but the one S atom less counterpart, $[\text{Ag}_2\text{S}_2\text{S}_3(\text{SR})_2]^{2+}$ (4 e)—which has a similar structure except the missing central S—became nonluminescent due to the PL quenching by free electrons (44). Liu et al. reported a centered cuboctahedral Cu_{13} NC (26), and by
replacing the central Cu with S, Cl, or Br to break the 2 \(e \) superatom, the luminescence can be enhanced as the ionic component of the host-guest interaction is increased as \(\text{Br} \approx \text{Cl} > \text{S} > \text{Cu} \) (45). By contrast, in our \(\text{X}@\text{Cu}_{14} \) NCs, the central Au atom—which leads to overall two free electrons in the cluster—instead enhances the PL of \(\text{Au}@\text{Cu}_{14} \) compared to \(\text{Cl}@\text{Cu}_{14} \). Thus, the \(\text{X}@\text{Cu}_{14} \) series have a previously unidentified mechanism for the role of the free electrons in the PL. Generally speaking, more free electrons decrease the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap \((\xi_\text{G} \) and, accordingly, reduce the PL. However, the 2 \(e \) \(\text{Au}@\text{Cu}_{14} \) and 0 \(e \) \(\text{Cl}@\text{Cu}_{14} \) herein show almost identical absorption spectra (fig. S1), indicating similar \(\xi_\text{G} \) and electron localization on Au as on the central Cl\(^-\) atoms), which could be explained by the large \([\text{Cu}_{14}(\text{TBBT})_{12}(\text{BCPP})]_n\) cage observed in the three NCs. These features are different from the \(\text{Ag}_{62} \) and \(\text{Cu}_{13} \) cases (26, 44, 45). In \(\text{Au}@\text{Cu}_{14} \), the central Au atom plays a critical role in affecting the intersystem crossing (ISC) from the \(S_1 \) to the \(T_1 \) and, subsequently, giving rise to strong phosphorescence. In general, organocopper complexes are far less efficient in phosphorescence generation compared to other heavy-metal (e.g., Ir and Pt) complexes, manifested in the spin-orbit coupling parameter (\(\xi \)). The \(\xi_\text{Cu} \) is only 857 \(\text{cm}^{-1} \), whereas \(\xi_\text{Ir} \) is 3909 \(\text{cm}^{-1} \) and \(\xi_\text{Pt} \) is 4481 \(\text{cm}^{-1} \) are much higher and hence promote ISC and enhance \(T_1 \) emission. In \(\text{Au}@\text{Cu}_{14} \), the central Au atom greatly improves the ISC process, as Au has the highest \(\xi_\text{Au} (= 5104) \) among all metals, and consequently greatly enhances the phosphorescence (Fig. 3A). Moreover, metal–metal interactions between the central Au and cubic \(\text{Cu}_6 \) in \(\text{Au}@\text{Cu}_{14} \) is favorable for electron transfer compared to the long distance of Cl–Cu (2.926, 2.899, 2.894, and 2.510 \(\text{Å} \)) in \(\text{Cl}@\text{Cu}_{14} \).

The emission peak positions of the three NCs are identical, indicating the energy gaps between \(T_1 \) and \(S_0 \) are the same for the series. However, when closely inspecting the absorption spectra (fig. S4) of \(\text{Au}@\text{Cu}_{14} \) and \(\text{Cl}@\text{Cu}_{14} \), we notice an absorption tail for the \(\text{Au}@\text{Cu}_{14} \), which corresponds to an \(S_1 \) at lower energy. In other words, the energy gap between \(S_1 \) and \(T_1 \) for \(\text{Au}@\text{Cu}_{14} \) is smaller than that in \(\text{Cl}@\text{Cu}_{14} \), which contributes to a more efficient ISC process.

1\(\text{O}_2 \) generation on \(\text{Au}@\text{Cu}_{14} \)

The triplet-state emission from \(\text{Au}@\text{Cu}_{14} \) was further verified by observing \(1\text{O}_2 \) production over the photoexcited \(\text{Au}@\text{Cu}_{14} \), in which the triplet state of \(\text{Au}@\text{Cu}_{14} \) transfers its energy to the normal triplet state \(1\text{O}_2 \), giving rise to singlet state \(0\text{O}_2 \). In the test, an ambient \(\text{CH}_2\text{Cl}_2 \) solution of \(\text{Au}@\text{Cu}_{14} \) with PLQY = 71.3% was purged with ultrahigh-purity grade \(\text{N}_2 \) for 5 min and then with \(\text{O}_2 \) for 10 min. Figure 4A shows PL spectra of the \(\text{N}_2 \)-purged and \(\text{O}_2 \)-saturated solutions. The \(\text{N}_2 \)-purged solution of \(\text{Au}@\text{Cu}_{14} \) shows a higher PLQY (85.6%) than the ambient solution (with \(\text{air} \) dissolved in the solution), whereas the \(\text{O}_2 \)-saturated solution quenches PL to QY of \(\approx 17.9\% \), but this quenching is much less than typical phosphorescent metal complexes (29). Singlet \(\text{O}_2 \) is an excited state of dioxygen and has a characteristic phosphorescence emission peak at \(\approx 1270 \text{ nm} \). The spectrum of the \(\text{N}_2 \)-purged \(\text{Au}@\text{Cu}_{14} \) solution was absent of \(\text{O}_2 \) emission (Fig. 4B, black), but the \(\text{O}_2 \)-saturated \(\text{Au}@\text{Cu}_{14} \) solution showed a distinct \(\text{O}_2 \) emission peak centered at \(\approx 1275 \text{ nm} \) (Fig. 4B), indicating the notable generation of \(\text{O}_2 \). To rule out the possibility that the PL quenching of the \(\text{O}_2 \)-saturated \(\text{Au}@\text{Cu}_{14} \) is resulted from the oxidation of the Au(II) shell, we performed XPS measurements before and after \(\text{O}_2 \) purging but found no obvious change in the oxidation state of Cu(I) measured (fig. S3). This is also confirmed by the identical UV-vis absorption spectra (Fig. 4C) and the recovery of its PL after purging with \(\text{N}_2 \) (Fig. 4A). Furthermore, PL quenching upon \(\text{O}_2 \) saturation and PL enhancement upon \(\text{N}_2 \) purging were also observed in \(\text{Cl}@\text{Cu}_{14} \) solution (fig. S5), similar to the \(\text{Au}@\text{Cu}_{14} \) system.
Electron dynamics of Au@Cu$_{14}$

We further probed the ultrafast electron dynamics of the Au@Cu$_{14}$ by performing transient absorption (TA) measurement (46). After photoexcitation at 400 nm, one observed excited state absorption (ESA) at 490 and 550 nm together with strong net ground state bleaching (GSB) signals at 460 and 510 nm (Fig. 5, A and B). The sharp and notable net GSB peaks suggest that absorption by Au@Cu$_{14}$ is strong. Within 0.2 to 1 ps, one can observe that ESA at 560 nm decays rapidly to give rise to a flat and featureless ESA band between 520 and 750 nm. Afterward, the TA signal decays slightly from 1 ps to 1 ns and remains unchanged until 7 ns (Fig. 5A and fig. S6), i.e., there is no additional change in the profile of TA spectra. Such TA profiles and relaxation dynamics of Au@Cu$_{14}$ are consistent with the observation in Fig. 2A that the emission is independent of the excitation wavelength. The PL lifetime of Au@Cu$_{14}$ was 1.23 μs measured by time-correlated single photon counting (TCSPC) (Fig. 5C), which is reasonable for the luminescence from the spin forbidden triplet state. Furthermore, the PL lifetime of Au@Cu$_{14}$ was also measured at different excitation wavelengths (fig. S7), and no obvious change was observed. Moreover, the PL lifetimes of Cl@Cu$_{14}$ and X@Cu$_{14}$ were measured to be 0.78 and 0.92 μs (fig. S8), respectively, which are shorter than that of Au@Cu$_{14}$, consistent with the lower PLQY of Cl@Cu$_{14}$ (Fig. 3).

Together, the microsecond lifetime, the critical role of central Au atom in effecting ISC, and the effective 1O$_2$ formation by photoexcited Au@Cu$_{14}$ confirm that the PL emission of Au@Cu$_{14}$ is phosphorescence. The sub-picosecond decay (<1 ps) is assigned to the internal conversion (IC) from S_n to S_1 state coupled with the ISC from S_1 to T_1 as no additional relaxation is observed, and the whole process is much shorter than the time constant of ISC measured for Cu(I) complexes (tens of picoseconds) (47). After the ultrafast IC and ISC processes, the excited electron goes from the long-lived triplet...
excited state to the ground state and emits phosphorescence with high QY (Fig. 5D). The fluorescence emission (S₂ to S₀) is completely inhibited due to ultrafast ISC (<1 ps), giving rise to phosphorescence only. The energy gap of Au@Cu₁₄ is >1.8 eV, which is sufficient for ¹O₂ generation (0.97 eV). The energy transfer between the cluster and ¹O₂ in their T₁ states follows the Dexter mechanism. Such a process requires a wave function overlap, and thus, it can only occur at short distances (a few angstroms).

In summary, this work reports a strategy of electronic-state engineering to achieve a highly phosphorescent Au@Cu₁₄ NC (2 e) with a single-atom kernel encaged by a rigid Cu(I) cage, and the NC shows >70% QY (λ_em ~ 625 nm) in non-degassed solution at room temperature. The phosphorescence emission originates from the triplet state of Au@Cu₁₄. The critical role of the central Au atom is illustrated by QY drop to ~40% when Au is replaced by Cl, indicating that Au enhances PL via spin-orbit coupling effect. The photoexcited Au@Cu₁₄ can effectively transfer energy to oxygen to generate ¹O₂, with PL quenching upon O₂ saturation of the NC solution, whereas N₂ purge increases PLQY to 85%. The analysis of electron dynamics reveals an ultrafast (<1 ps) relaxation from S₁ state coupled with ISC from S₁ to T₁, and a microsecond excited-state lifetime from T₁ to S₀. The strategy of single-heavy-atom core with a rigid Cu(I) cage, and the NC shows >70% QY (Fig. 5D). The fluorescence emission (S₁ to S₀) is completely inhibited due to ultrafast ISC (<1 ps), giving rise to phosphorescence only. The energy transfer between the cluster and ¹O₂ in their T₁ states follows the Dexter mechanism. Such a process requires a wave function overlap, and thus, it can only occur at short distances (a few angstroms).

MATERIALS AND METHODS

Synthesis of Au@Cu₁₄

A 0.4-mL aqueous solution of NaAuBr₄·H₂O (0.275 g/ml) and 130 mg of tetracyanoammonium bromide were mixed in 15 mL of dichloromethane and vigorously stirred (~1100 rpm) for 30 min. After that, 150 μL of 4-tert-butylbenzenethiolate was added to the solution. After 60 min, 37 mg of Cu(NO₃)₂ dissolved in 5 mL of methanol was added to the above solution and stirred for 30 min. Then, 150 mg of bis(2-cyanoethyl)-phenylphosphine was added to the above solution, and the solution color changed to colorless, indicating the formation of Cu(I) and Au(I) complexes. After 60 min, 5 mL of aqueous solution of NaBH₄ (150 mg) was rapidly added. The reaction was allowed to proceed for ~18 hours. Last, the organic solution was evaporated and washed several times with methanol/ethanol to remove the redundant ligands and by-products. The as-prepared products were crystallized in CH₂Cl₂/n-hexane at room temperature (4 to 6 days). The X@Cu₁₄ and Cl@Cu₁₄ NCs were prepared with similar methods (see details in the Supplementary Materials).

Transient absorption

The femtosecond TA spectroscopic measurements were performed on a commercial Ti:Sapphire laser system (Coherent Astrella). The ~100-fs laser pulses in the UV and near-infrared regions of the spectrum were generated by a 1.2-mL regenerative amplifier system and optical parametric amplifier (OPA, Light Conversion). A small portion of the laser fundamental was focused to a sapphire plate to produce a supercontinuum in the visible range, which overlapped with the pump in time and space. Multiwavelength transient spectra were recorded at different pump-probe delay times (Helios Fire, Ultrafast Systems). Dilute solutions of metal clusters in 1-mm path length cuvettes were excited by the tunable output of the OPA (pump). The measurements were performed in toluene or chloroform, and the optical density was adjusted to be about 0.3 optical density at the excitation wavelength. Nanosecond emission lifetime is measured on a HORIBA FluoroMax-4P by TCSPC.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/7/2/eabd2091/DC1

REFERENCES AND NOTES

Temperature dependence of molecular structure and luminescence thermochromism of \([\text{Cu}_4\text{PPh}_3\text{As}]_2\) in two polymorphic crystalline states. Chem. Commun. 46, 6302–6304 (2010).

43. G. Li, Z. Lei, Q.-M. Wang, Luminescent molecular Ag-S nanocluster \([\text{Ag}_2\text{S}_3\text{S}_2\text{Bu}_2]_2[\text{BF}_4]_4\). J. Am. Chem. Soc. 132, 17678–17679 (2010).

Ultrabright Au@Cu$_{14}$ nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature

Yongbo Song, Yingwei Li, Meng Zhou, Xuan Liu, Hao Li, He Wang, Yuhua Shen, Manzhou Zhu and Rongchao Jin

Sci Adv 7 (2), eabd2091.
DOI: 10.1126/sciadv.abd2091