INTRODUCTION

γ-Aminobutyric acid (GABA) is a key neurotransmitter in the central nervous system (CNS) and is responsible for the inhibition of neurons (1). In the synaptic cleft, GABA is sensed by two types of receptors, GABA_A and GABA_B. Ionotropic GABA_A receptors are pentameric ligand-gated ion channels that mediate fast responses (milliseconds) by counteracting potentials through increasing the Cl⁻ permeability of the neuronal membrane (2, 3). Metabotropic GABA_B receptors are G protein–coupled receptors (GPCRs), which, on the other hand, elicit slow (hundreds of milliseconds) and sustained activity (4) by triggering signal transduction pathways with downstream effectors such as ion channels and adenyl cyclases, mainly via G_{ia/o} proteins (Fig. 1). GABA_B receptors act both pre- and postsynaptically, where they either block neurotransmitter release through the inhibition of voltage-gated Ca²⁺ channels or induce hyperpolarization of the neuron by opening G protein–gated inwardly rectifying K⁺ (GIRK) channels (5). Given the central role of GABA_B in neurobiology, it is implicated in a broad spectrum of neurological and psychiatric disorders, such as epilepsy (6), spasticity (7), stress (8), sleep disorders (9), neuropathic pain (10), and depression and anxiety (11). GABA_B has also been strongly linked to drug addiction, where the systemic administration of the selective GABA_B agonist baclofen inhibits alcohol, cocaine, morphine, and heroin self-administration in rats (12) and is under investigation as a treatment of alcohol addiction in human patients (https://clinicaltrials.gov/ct2/show/NCT02596763).

GABA_B, together with metabotropic glutamate (mGlu), calcium sensing (CaS), and taste (TAS) receptors, forms class C of GPCRs (13). GABA_B receptor was the first GPCR for which the functional entity was demonstrated to be an obligate heterodimer, consisting of two subunits GB1 and GB2, and each subunit individually is thought to be not capable of signaling (14–16). Each receptor subunit comprises an extracellular Venus flytrap (VFT) domain, connected by a short linker to the canonical seven-transmembrane domain (TMD). There are two major identified isoforms of GB1: GB1a [961 amino acids, UniProt (17) ID Q9UB55] and GB1b (844 amino acids, UniProt ID O75899), which differ in either the presence (GB1a) or absence (GB1b) of two “sushi” domains (SD1 and SD2) at the N terminus. The main role of the sushi domains is trafficking and cell surface stabilization; heterodimers containing GB1a interact with amyloid precursor protein (APP) directing them into axons of glutamatergic neurons, while both isoforms traffic into dendrites (18, 19). The C termini of both subunits contain a coiled-coil (CC) motif, which has two known functions: The formation of the CC has a positive effect on the heterodimerization of GABA_B, while this interaction also masks an endoplasmic reticulum (ER) retention signal on GB1, ensuring that, predominantly, heterodimers are trafficked toward the plasma membrane (20). Receptor activation has been proposed to consist of a unique allosteric mechanism, where binding of an agonist in the VFT of GB1 results in a series of conformational rearrangements, which are translated into the TMD of GB2 to trigger G protein signaling (21).

Five recent studies have described high-resolution reconstructions of the near full-length GABA_B heterodimer by single-particle cryo–electron microscopy (cryo-EM) (22–26). In particular, it was possible to map the activation pathway by capturing several discrete conformational states: inactive (apo and antagonist bound), two intermediates (agonist bound), active [agonist and positive allosteric modulator (PAM) bound], and active in complex with G protein (agonist, PAM, and G protein bound). These structures provide detailed insights into the unique activation mechanism of GABA_B, where upon agonist binding, large conformational rearrangements of the VFTs are translated to the TMDs, ultimately leading to signaling via G proteins.

Despite tremendous efforts to develop novel drugs, only few targeting GABA_B are Food and Drug Administration–approved, one of which is the muscle relaxant baclofen (27). Several drug candidates showed promising initial results but were ultimately abandoned due to severe side effects (i.e., seizures, sedation, and respiratory depression) as well as the development of tolerance and dependence. We believe that structural insights in the intricate activation mechanism of GABA_B receptors offer opportunities for pharmaceutical
intervention by compounds with functional properties distinct from classical agonists, particularly by allosteric modulators.

In this review, we will describe our current understanding of the unique activation mechanism of GABA_B on a molecular level, which provides fundamental insights into the biology of this important neurotransmitter receptor. We will emphasize the structural aspects of receptor activation while also placing these novel findings in the context of physiology, pathology, and drug development.

HISTORICAL PERSPECTIVE AND MAJOR MILESTONES OF GABA_B RESEARCH

While known as a metabolite in plants and bacteria since the beginning of the 20th century, GABA was not actively studied until its discovery as the major amine present in the brain in 1950 (28, 29). The inhibitory function of GABA was first proposed in the late 1950s (30); however, its role remained controversial for another decade. Since the late 1960s and the 1970s, research had accelerated,
firmed establishing GABA as an inhibitory neurotransmitter acting through a receptor (31). Eventually, Bowery and colleagues (32, 33) found distinct GABA binding sites in 1980, coining the term GABA_B receptor to distinguish it from the previously known GABA_A receptor. The physiological roles of GABA_B were uncovered in a series of studies in the late 1980s (34); however, it has taken another decade to clone the two subunits and establish the heterodimeric nature of the receptor, as reported in three seminal back-to-back publications in 1998 (14–16). Cloning GABA_B opened up a venue for studying molecular mechanisms of its function, where a high-resolution receptor structure would have been critical but remained elusive, resulting in a divide-and-conquer approach for structure determination. During the past several years, crystallography and nuclear magnetic resonance (NMR) revealed the structure of the VFTs and the details of its orthosteric ligand-binding site (35, 36), the structure of the CC domain that regulates receptor trafficking (20), that of the GB2 C-terminal peptide in complex with an auxiliary protein potassium channel tetramerization domain (KCTD) regulating GABA_B signaling (37, 38), and the structure of the sushi domains SD2 (39) and SD1 in complex with a peptide derived from soluble amyloid-precursor protein (40). Last, 70 years after the discovery of GABA in the brain, five research groups (22–26) independently determined 12 cryo-EM structures of nearly full-length GABA_B heterodimer in complex with different ligands and in different conformational states (Table 1), shedding light on its molecular mechanisms of signal transduction across the membrane.

STRUCTURE DETERMINATION OF THE FULL-LENGTH GABA_B HETERODIMER

The breakthrough in GABA_B structure determination was enabled by technological advancements in cryo-EM, as well as receptor expression and purification. Most important recent improvements include optimized protocols for cryo-EM sample preparation, particularly using accumulated knowledge of suitable detergents for membrane protein structure determination (41), substantially faster data collection strategies by exploiting beam shift (42), better access to high-end instrumentation, and markedly improved data processing pipelines (43–45). Near full-length constructs of GB1 and GB2, lacking the N-terminal sushi domains and flexible C-terminal tails, were transiently coexpressed in insect (Sf9) (22, 24) or mammalian (HEK293GnTI[−] or HEK293F) (23, 25, 26) suspension cells using baculovirus- or polyethylenimine-mediated transfection. Sodium butyrate was added 10 to 18 hours after transfection to increase protein expression in mammalian cells (23, 25, 26). Cells were harvested 48 hour (Sf9) or 48 to 90 hours [HEK293 (human embryonic kidney 293)] after transfection, and receptors were extracted from isolated membranes using either n-dodecyl-β-D-maltopyranoside/cholesteryl hemisuccinate (CHS) (22, 24) or lauryl maltose neopentyl glycol/CHS (23, 25, 26). The detergent used for extraction were replaced by digitonin (22) or glyco-diosgenin/CHS (24, 26) during receptor purification. Solubilized receptors were purified in the presence or absence of the corresponding ligands using dual-affinity chromatography with two different affinity tags (Flag, His, or enhanced green fluorescent protein) situated on GB1 and GB2 subunits, respectively. Park et al. (23) used ion-exchange chromatography instead of the second affinity purification step. Mao et al. (25) further assembled and captured GABA_B in complex with a heterotrimeric G_i protein and a stabilizing antibody scFv16. In all cases, purified and concentrated receptors were run through a size exclusion column packed with Superose 6 (or Superose 6 Increase) resin before applying them to EM grids, blotting, and plunge-freezing in liquid ethane (22, 24–26) or propane/ethane (23). Kim et al. (26) added 0.1% octyl-β-D-glucoside (OG) to the sample before transferring it to the grids to alleviate the problem of preferred receptor orientation, which often occurs in case of elongated molecules, such as GABA_B, trapped in thin ice. Addition of OG results in lowering the surface tension and can lead to increased ice thickness, allowing to capture a broader range of receptor orientations, however, in expense of a higher noise limiting the overall resolution. Despite the variations in the sample preparation protocols and potential limitations due to the use of detergent rather than membrane environment, the GABA_B structures obtained by different groups show remarkable consistency, highlighting the robustness of the applied approaches.

STRUCTURE OF THE GABA_B HETERODIMER

The overall assembly of the GABA_B heterodimer follows the class C GPCR topology of a dimeric receptor with a large extracellular ligand-binding domain (Fig. 2). The N-terminal extracellular domains, each consisting of two lobes, LB1 and LB2, are referred to as “Venus flytrap domains” (VFTs), since the GB1 VFT can “trap” ligands in its orthosteric binding site, located between the two lobes. Each VFT is connected to a canonical TMD via a stalk domain (Fig. 2A). This stalk consists of a relatively rigid, twisted three-stranded β sheet, formed by the linker connecting the VFT and TMD together with the long extracellular loop 2 (ECL2) of the TMD. A patch of charged residues provides additional stabilization between the stalk and the VFT (Fig. 2B). The stalk domain is unique to GABA_B, while all other class C receptors have a cysteine-rich domain as a connection between their extracellular and TMDs (Fig. 2B).

The GB1_A isoform contains two N-terminal sushi domains, SD1 and SD2, with sequences homologous to complement control protein (CCP) domains, also known as short consensus repeats, which are present in the regulator of complement activation protein family (46). Although each of the sushi domains forms two intact disulfide bonds, only SD2 adopts a compact fold, while SD1 appears to be natively disordered (39). SD1 has been found, however, essential for binding to extracellular matrix and APPs. Structures of intact SD2 and of SD1 in complex with a 9-mer peptide derived from APP were solved by NMR (39, 40). Both structures adopt a similar fold [root mean square distance (RMSD) = 2.1 Å] consisting of a small β sheet, connected by ordered loops.

The structure of the C-terminal CC domain shared between GB1 and GB2 was determined by x-ray crystallography (20). The CC resembles a classic “knobs-into-holes” motif with an extensive network of intersubunit hydrogen bonds. This crystal structure gave insights into the heterodimerization of the two subunits and revealed that the di-leucine ER retention signal is buried within the interface, facilitating trafficking of the GB1–GB2 heterodimer to the cell surface (20). The active state GABA_B structure of Shaye et al. (22) showed an elongated density protruding from the intracellular side of GB2 at a 20° angle relative to the membrane surface, which was tentatively assigned to the CC domain. However, the local resolution was not sufficient for unambiguous building and inclusion of this domain in the final model. This observation could hint at a possibility that, besides trafficking, the CC domain could also play a
Table 1. Summary of available GABA_B structures and details of structure determination methods. CHS, cholesteryl hemisuccinate; GDN, glyco-diosgenin; GFP, green fluorescent protein; LMNG, lauryl maltose neopentyl glycol.

<table>
<thead>
<tr>
<th>Reference</th>
<th>PDB ID</th>
<th>Assembly</th>
<th>Resolution (Å)</th>
<th>Ligand(s)</th>
<th>Purification</th>
<th>Cell line</th>
<th>Detergent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryo-EM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaye et al. (22)</td>
<td>6VJM</td>
<td>GB1-GB2</td>
<td>4.0</td>
<td>apo</td>
<td>Anti-Flag M2</td>
<td>SF9</td>
<td>Digitonin</td>
</tr>
<tr>
<td></td>
<td>6UOA</td>
<td>GB1-GB2</td>
<td>6.3</td>
<td>SKF97541<sub>AGO</sub></td>
<td>Anti-GFP NB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6UO9</td>
<td>GB1-GB2</td>
<td>4.8</td>
<td>SKF97541<sub>AGO</sub></td>
<td>Superose 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6UO8</td>
<td>GB1-GB2</td>
<td>3.6</td>
<td>SKF97541<sub>AGO</sub> + GS39783<sub>RAM</sub></td>
<td>Increase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papasergi-Scott et al. (24)</td>
<td>6W2X</td>
<td>GB1-GB2</td>
<td>3.6</td>
<td>CGP55845<sub>ANT</sub></td>
<td>Anti-Flag G1</td>
<td>SF9</td>
<td>GDN/CHS</td>
</tr>
<tr>
<td></td>
<td>6W2Y</td>
<td>GB1-GB1</td>
<td>3.2</td>
<td>CGP55845<sub>ANT</sub></td>
<td>Ni-NTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Superose 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park et al. (23)</td>
<td>6WIV</td>
<td>GB1-GB2</td>
<td>3.3</td>
<td>apo</td>
<td>Anti-Flag M2</td>
<td>HEK293 GnTI</td>
<td>LMNG/CHS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mono Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Superose 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mao et al. (25)</td>
<td>7C7S</td>
<td>GB1-GB2</td>
<td>3.0</td>
<td>CGP54626<sub>ANT</sub></td>
<td>Ni-NTA</td>
<td>HEK293F</td>
<td>LMNG/CHS</td>
</tr>
<tr>
<td></td>
<td>7C7Q</td>
<td>GB1-GB2 + G<sub>+</sub> + scFv16</td>
<td>2.8</td>
<td>Baclofen<sub>AGO</sub> + rac-BHFF<sub>RAM</sub></td>
<td>Anti-Flag M1</td>
<td>HEK293F</td>
<td>LMNG/CHS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Superose 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim et al. (26)</td>
<td>7CAS</td>
<td>GB1-GB2</td>
<td>7.6</td>
<td>apo</td>
<td>Anti-Flag G16</td>
<td>HEK293 GnTI</td>
<td>GDN/CHS/OG</td>
</tr>
<tr>
<td></td>
<td>7CA3</td>
<td>GB1-GB2</td>
<td>4.5</td>
<td>GABA<sub>AGO</sub> + rac-BHFF<sub>RAM</sub></td>
<td>Anti-GFP DARPin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7CUM</td>
<td>GB1-GB2</td>
<td>3.5</td>
<td>CGP54626<sub>ANT</sub> + CLH304<sub>RAM</sub></td>
<td>Anti-GST</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Superose 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray crystallography</td>
<td>4F11</td>
<td>GB2 VFT</td>
<td>2.4</td>
<td></td>
<td>Anti-Flag M2</td>
<td>SF9</td>
<td></td>
</tr>
<tr>
<td>Geng et al. (35)</td>
<td>4F12</td>
<td>GB2 VFT</td>
<td>3.0</td>
<td></td>
<td>Superdex 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geng et al. (36)</td>
<td>4MQE</td>
<td>GB1-GB2 VFT</td>
<td>2.35</td>
<td>apo</td>
<td>Anti-Flag M2</td>
<td>SF9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4MS4</td>
<td>GB1-GB2 VFT</td>
<td>1.90</td>
<td>Baclofen<sub>AGO</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4MS3</td>
<td>GB1-GB2 VFT</td>
<td>2.50</td>
<td>GABA<sub>AGO</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4MR7</td>
<td>GB1-GB2 VFT</td>
<td>2.15</td>
<td>CGP54626<sub>ANT</sub></td>
<td>Superdex 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4M51</td>
<td>GB1-GB2 VFT</td>
<td>2.25</td>
<td>CGP46381<sub>ANT</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4MR8</td>
<td>GB1-GB2 VFT</td>
<td>2.15</td>
<td>CGP35348<sub>ANT</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4MR9</td>
<td>GB1-GB2 VFT</td>
<td>2.35</td>
<td>SCH50911<sub>ANT</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burmakina et al. (20)</td>
<td>4PAS</td>
<td>GB1-GB2 coiled coil</td>
<td>1.62</td>
<td>Talon</td>
<td>BL21 (DE3)</td>
<td>Mono Q</td>
<td>Superdex 75</td>
</tr>
<tr>
<td>Zheng et al. (37)</td>
<td>6M8R</td>
<td>KCTD16 + GB2 C terminus</td>
<td>3.2</td>
<td>Ni-NTA</td>
<td>BL21 (DE3)</td>
<td>Q Sepharose</td>
<td>Superdex 5200</td>
</tr>
<tr>
<td>Zuo et al. (38)</td>
<td>6OCP</td>
<td>KCTD16 + GB2 C terminus</td>
<td>2.35</td>
<td>Co<sup>2+</sup> IMAC</td>
<td>BL21-CodonPlus (DE3)-RIL</td>
<td>Mono Q</td>
<td></td>
</tr>
</tbody>
</table>
regulatory role in receptor signaling, which could warrant further investigations.

The orthosteric ligand-binding site is located at the interface between LB1 and LB2 of GB1 (Fig. 4). On the basis of the available x-ray and cryo-EM structures, both agonists and antagonists are anchored by several polar residues—such as S247, S248, S270, H287, E466—and a key aromatic residue W182 of LB1. Binding of an agonist leads to the closure of these two lobes by engaging two bulky aromatic LB2 residues, Y367 and W395, sandwiching the ligand.

Park et al. (23) and Papasergi-Scott et al. (24) both described putative calcium binding to the LB2 lobe of GB1, in close proximity to the orthosteric binding site of GABA_B (Fig. 3A). While recent structures of receptors across different GPCR classes have started to hint at a broader role of ions in ligand binding and receptor modulation (47, 48), notably, calcium was not identified in the previous high-resolution crystal structures of GABA_B VFT (36), where water molecules were modeled at corresponding sites. In the past, several studies reported a positively modulating effect of a broad range of divalent cations on GABA_B (49–51), while Park et al. (23) have revealed the ion identity using mass spectrometry. The positive modulation could be explained by a stabilizing effect of the ion on the conformation of the loop containing W395, which is one of the key residues in LB2 that interacts with both agonists and antagonists (Fig. 4, C to F).

Unexpectedly, several groups (23–26) also identified endogenous phospholipid binding sites, located within both TMDs of the heterodimer (Fig. 3, C and D). Phospholipid binding has been suggested to confer a positive effect on receptor stability and integrity, as well as to modulate signaling. The locations of these sites within GABA_B TMDs correspond to orthosteric ligand-binding sites in class A and B GPCRs and allosteric sites in class C and F receptors; however, no double-chain phospholipid binding in those pockets has been previously observed. The identity of these lipids was probed by mass spectrometry and assigned as PE (phosphatidylethanolamine) 38:5 (GB1) and PC (phosphatidylcholine) 38:2 (GB2) (23). The overall binding mode of the endogenous phospholipids appears to be conserved between the two subunits, with an intricate network of interactions with most TM helices, except for TM1 and TM4, forming a large interface contact area of ~1000 Å². The head group of each lipid is anchored through polar interactions with conserved R^{K.50} in TM5 and histidine in ECL2 (H760 in GB1 and H647 in GB2), as well as with R714 in ECL3 of GB2. The port of lipid entry into the TMD is most likely located between TM5 and TM6, as one of the acyl tails protrudes through a gap between these two helices in both subunits. Mutational studies suggested that PC 38:2 acts as a negative allosteric modulator (NAM), as it appears to stabilize the inactive state of GABA_B (24); however, further studies are required to fully understand the biological function of these interactions.

INACTIVE STATE OF GABA_B

All five cryo-EM publications (22–26) present the receptor in an inactive state (three apo- and three antagonist-bound structures, Table 1). Their VFTs are very similar within an RMSD_{VFT} of ~0.8 to 1.2 Å and align equally well with the previously published x-ray structures of apo- and antagonist-bound states of the VFTs (36). Antagonists, CGP54626 and CGP55845, are anchored in the orthosteric site of GB1 VFT by polar interactions with LB1 residues S247, S270, H287, E466, similarly to agonists; however, they have bulky substituents at both amino and phosphinic acid ends interacting with Y367 and W395 from LB2 in its open conformation (Fig. 4, E and F). This observation could hint toward the mechanism of these antagonists acting like a “doorstop,” preventing the VFT from closing for activation, which is consistent with their function as inverse agonists in constitutively active receptor mutants (52). Kim et al. (26) used a NAM CLH304a along with the antagonist CGP54626 for obtaining their structure [Protein Data Bank (PDB) ID 7CUM]; however, no density for the NAM was observed. The TMD conformations between the six structures are very similar (RMSD_{TMD} ~ 1.1 to 1.4 Å), all showing a heterodimer interface with the proposed inter-subunit latch at the intracellular tips of TM5 and TM3, consisting of H689^{3.55}, E790^{5.60} in GB1 and H579^{3.55}, E677^{5.60} in GB2, which locks the receptor in its inactive state (Fig. 3E). Notably, Park et al. (23) and Kim et al. (26) described an extensive network of cholesterol molecules surrounding this exact interface, potentially stabilizing the inter-subunit latch. In addition, in both subunits, the intracellular ends of TM3 and TM6 are constrained by an ionic lock between K^{3.50} and D^{7.35}, which is conserved in class C GPCRs (53).

Comparing the inactive state structures overall, the most pronounced differences are found in the relative orientation of the VFTs with respect to the TMDs, of which all five are captured in a slightly different relative angle (within 2°), with no apparent correlation between apo- and antagonist-bound states, in line with Shaye et al.’s (22) molecular dynamics (MD) simulations that proposed some freedom of motion of the VFT relative to the TMD in the inactive state. As a caveat, this relative motion could also be explained by the fact that all above mentioned data processing schemes either involved separate treatment of the VFT and TMDs, and subsequent merge of the individually refined maps, or used local refinement strategies, allowing for a flexible hinge between the two domains, to obtain high-resolution reconstructions.

GABA_B ACTIVE STATE

Three of the five studies (22, 25, 26) were able to obtain a high-resolution reconstruction of the active state of GABA_B. In all three structures, a PAM was required in addition to an agonist to lock the

<table>
<thead>
<tr>
<th>Reference</th>
<th>PDB ID</th>
<th>Assembly</th>
<th>Resolution (Å)</th>
<th>Ligand(s)</th>
<th>Purification</th>
<th>Cell line</th>
<th>Detergent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice et al. (40)</td>
<td>6HKC</td>
<td>SD1 + APP 9mer</td>
<td></td>
<td>Ni-Sepharose</td>
<td>BL21 (DE3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blein et al. (39)</td>
<td>1SS2</td>
<td>SD2</td>
<td></td>
<td>Sephacryl S100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mono S</td>
<td>Pichia pastoris</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RP2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
receptor in the active state. One of the three structures (PDB ID 7C7Q) was captured in complex with a Gi protein (25), although the local resolution around the Gi protein was reported to be much lower than the rest of the receptor, precluding modeling of the Gi protein itself. In the active state, the VFTs adopt closed (GB1)–open (GB2) conformation upon agonist binding, while the TMDs rearrange to get into close contact along a TM6–TM6 interface, which includes mostly hydrophobic interactions, except for two hydrogen bonds (GB1-Y810–GB2-N698 and GB1-N811–GB2-Y697). The ionic lock between TM3 and TM6 in GB2 is broken, and the intracellular ends of TM3, TM4, and TM5 are shifted by 4 to 6 Å with respect to their positions in the inactive state, opening up a cleft on the intracellular side of GB2 for G protein binding. All three structures are similar (RMSD < 2 Å), showing overall rearrangements required for the activation of GABA$_B$ while indicating that two structurally different PAMs are binding to the same allosteric site at the heterodimer TMD interface. However, comparing these three structures, the Shaye et al. (22) structure (PDB ID 6UO8) appears slightly bulkier overall—based both on the longer distance between the VFT lobes (~2.5 Å, measured between Ca atoms of GB1-Q577 and GB2-K467) and on a slightly looser packing of the TMDs (~2 Å longer TM5–TM5 distance, measured between Ca atoms of GB1-Y774 and GB2-Y661). In summary, this suggests that the active state conformation of GABA$_B$ may slightly differ depending on the specific combination of an agonist and PAM; however, it does not seem to depend on the presence of a G protein.

PAM BINDING SITES COMPARISON

One of the most notable discoveries in the reported cryo-EM structures was the identification of the PAM binding sites at the interface of the two TMDs in the active state of GABA$_B$. Notably, two chemically distinct PAMs, GS39783 (6UO8) and (+)-BHFF (7C7Q and 7CA3), were found to bind at overlapping sites, buried inside the membrane and composed of residues from TM5, TM6, and TM7 of both subunits (Fig. 4) (22, 25, 26). Both PAMs have amphiphilic properties, allowing them to partition into and penetrate through the membrane. Mao et al. (25) and Kim et al. (26) used rac-BHFF as PAM but found that the (+)-BHFF enantiomer fits better in the experimental density, in agreement with pharmacological data (54). (+)-BHFF occupies a predominantly hydrophobic pocket made of residues GB1-A788, GB1-Y789, GB1-M807, GB1-Y810, GB2-N698, GB2-K690, GB2-Y691, and GB2-M694, and it forms one hydrogen bond with GB1-K792. On the other hand, GS39783 is anchored by a hydrogen bond with GB2-N698 and a stacking interaction with GB1-Y810, as well as by extensive hydrophobic and polar interactions with GB1-Y789, GB1-K792, and GB1-M807, GB2-M694, and GB2-Y697.

G PROTEIN BINDING

Mao et al.’s study (25) is the only one of the five studies that describes a structure of GABA$_B$ in complex with a Gi protein. Initially, the authors tried capturing the structure of the complex using a
Gi1 is rotated about 90° may represent an intermediate state. Where the B2a state is the most stable, while the B2b state in which Gi1 is also bound to GB2, and (iii) 9% of particles were found in a B2b state (8.6 Å) in which Gi1 is also bound to GB2.

The overall conformation of the homodimer, however, is similar to the conformation of the active state heterodimer in which the LB2 lobes of both subunits come in contact, rearranging the TMDs to interact along TM6. Despite resembling the active-like subunit arrangement, there are no conformational changes within TMDs, and the homodimer is unable to bind to G protein and other transducers.

GB1 HOMODIMER

While the primary signaling unit of GABA$_B$ is a heterodimer, it has been shown that each subunit can form homodimers (55) and that the two subunits can assemble into higher-order oligomers (56). Papasergi-Scott et al. (24) observed that, along with the GB1-GB2 heterodimer, they could purify a GB1 homodimer. Subsequently, they collected cryo-EM data for a GB1 homodimer bound to an antagonist CGP55845, which resulted in a 3.2-Å resolution structure (PDB ID 6W2Y) with each subunit occupied by the antagonist and arranged in a twofold symmetry (24). In the antagonist-bound homodimer, the VFTs of each subunit adopt a fully open conformation, very similar to the GB1 subunit of the antagonist-bound x-ray structure (4MR7, RMSD = 0.86 Å), locked in an inactive conformation (36). The overall conformation of the homodimer, however, is similar to the conformation of the active state heterodimer in which the LB2 lobes of both subunits come in contact, rearranging the TMDs to interact along TM6. Despite resembling the active-like subunit arrangement, there are no conformational changes within TMDs, and the homodimer is unable to bind to G protein and other transducers.

ACTIVATION MECHANISM OF GABA$_B$

In addition to two major stable receptor conformations, active and inactive, Shaye et al. (22) observed two distinct intermediate states (int-1 and int-2) along the receptor activation trajectory in the presence of an agonist (Fig. 5). Both intermediate states have comparably lower resolution (6.3 and 4.8 Å), as they are likely present in a dynamic equilibrium, preventing assignment of most amino acids. These
intermediate state structures, nevertheless, provide important insights into the activation pathway of GABA_B. They add crucial details to the large conformational rearrangements that delineate the activation pathway, where, first, the LB lobes of the GB1-VFT close upon agonist binding (int-1 state), likely accompanied by breaking the intersubunit latch between the two TM5s. After the closure of the VFT, a rearrangement of the entire heterodimer interface is observed, which closes the gap between the LB2 domains of the two VFTs while forming a new TMD interface along TM6s (int-2 state).

The presence of these intermediate states highlights that GABA_B activation is decoupled into at least two main transitions, as opposed to a single concerted motion. The second intermediate state—in contrast to the final active state structures—also demonstrates that the GB2 TMD remains in the inactive conformation, with the TM6-TM3 ionic lock still intact. Only the addition of a PAM that stabilized this state for structure determination allowed capturing the final step of the activation-related rearrangements, namely, straightening and displacements of intracellular parts of TM3 to TM5, which open a cleft that accommodates G protein binding. These findings have general implications for our understanding of GABA_B, as they showcase a tightly regulated activation mechanism with multiple activation barriers, which have to be overcome in order for the receptor to reach its fully active, signaling state. Compared to other homodimeric class C receptors [reviewed in (57)], the activation mechanism of GABA_B is unique in that it is an entirely asymmetrical process, although ultimately resulting in a similar TMD interface along TM6 (Fig. 2). The discovery of the intermediate states in GABA_B activation is in agreement with submillisecond fluorescence resonance energy transfer studies of mGluR1, which also proposed two intermediate states along its activation pathway (58).

Additional insights in the asymmetric activation mechanism have been provided by spectroscopic studies of mGluR heterodimers (59) and GABA_B receptors (60).

Comparing the conserved motifs in class A and C receptors in more detail, notable similarities and differences can be attributed to their different modes of action become apparent. (i) The ionic lock between K^{3.50} and E/D^{6.35}, conserved in class C receptors, is also observed in the inactive state in both GABA_B subunits (61). A similar conserved lock is present in class A GPCRs between the residues R^{3.50} and D/E^{6.30}, where mutational disruptions of the lock showed increased basal activity (62, 63). It should be noted in this context that generic residue numbering differs between GPCR classes and depends on the intraclass conservation of a residue rather than its absolute position relative to the lipid bilayer (64). The ionic lock appears to play an important role in GABA_B signaling, since it is broken in GB2 in the active state, and mutating GB2-K^{3.50} to an acidic residue results in a complete loss of function (63). (ii) The FxP^{7.50}KxY motif at the intracellular end of TM7 is highly conserved in class C GPCRs and shares similarity with the NP^{7.50}xXY motif of class A. In class A, Y^{7.53} plays a critical role in stabilizing the TM3-TM7 interface in the active state. However, in class C, Y^{7.53} (mGluR) or R/I^{7.53} (GB1/2) faces toward the outside of the helical bundle and does not make any contacts with TM6. On the other hand, K^{7.51} participates in a network of hydrogen bonds with the ionic lock through N^{2.39}, S625^{ICL1} in GB1 and S515^{ICL1} in GB2, thereby stabilizing the intracellular segment of the TMD. (iii) The residue W^{6.48} from the highly conserved FxtxCWxP^{6.50} motif in class A GPCRs was proposed to act as a "toggle switch," changing its conformation upon activation (65). In addition, F^{6.44} belongs to the P-I-F motif that rearranges upon agonist binding (66), initiating a cascade of conformational changes that result in the large-scale movements of TM5 and TM6, and enables the receptor to engage with G protein. The mGlu receptors, on the other hand, feature a highly conserved W^{6.50} residue at the equivalent position; however, in mGluR, it holds a different conformation, forming a bridge between TM5 and TM6 (53). In both GB1 and GB2 of GABA_B, this residue is replaced with a Cys residue to

Fig. 4. Structural details of orthosteric ligands and PAM binding to GABA_B. (A) and (B) Binding of PAMs at the heterodimeric TMD interface: GS39783 (PDB ID 6UO8) and (+)-BHFF (7C7Q). (C) and (D) Binding of agonists in the orthosteric site of GB1 VFT: SKF97541 (6U08) and baclofen (7C7Q). (E) and (F) Binding of antagonists in the orthosteric site of GB1 VFT: CGP55845 (6W2X) and CGP54626 (7C7S). (G) Orthosteric ligand-binding site of GB1 VFT in the apo state (6VM). Ligands are shown as sticks with carbon atoms colored in sand, oxygen in red, nitrogen in blue, chlorine and phosphor in light green, sulfur in dark green, and fluorine in pale blue. GB1 and GB2 subunits are colored in blue and gold, respectively. In (C) to (G), LB1 and LB2 of GB1 subunit are colored in blue and teal, respectively.
avoid the steric clash with the phospholipid occupying the TMDs and allows the hydrophobic chain of the lipid to enter a cavity created at the interface of TM5 and TM6 of both subunits.

Implications of GABAB Structures for Understanding Disease and Drug Discovery

Mutational model of GABAB and its correlation to different diseases

GABAB is considered the oldest member of class C GPCRs (67). Given the importance of GABA as a major inhibitory neurotransmitter in the brain, it is perhaps expected that the amino acid sequence of GABAB receptor is evolutionarily constrained. This results in an exceptionally low number of naturally occurring variants: Among the 19,704 human Ensembl transcripts in the gnomAD (v 2.1.1) database of naturally occurring sequence variants in more than 15,000 genomes and more than 125,000 exomes (68, 69), GB1 and GB2 both rank in the 99th percentile (127th/151st, respectively) and first and second among 697 GPCRs mapping to human transcripts, in particular, Rett syndrome and epileptic encephalopathy (72–74). Mapping the most notable variants—such as GB2-A567^3.43^T, GB2-G693^6.40^W, GB2-S695^6.42^I, GB2-I705^5.52^N, and GB2-A707^6.54^T—onto the available GABAB structures revealed their distribution across the GB2 TMD. In particular, GB2-A567^3.43^T is situated at the bottom of the lipid-binding crevice of GB2 and has been found to impair receptor signaling efficacy (73). Of the other residues, GB2-I705^5.52^N points toward the lipid bilayer, which could potentially destabilize the TMD and affect TM6-TM6 dimerization, while GB2-A707^6.54^T is close to the opening through which the lipid enters the pocket. Residues GB2-G693^6.40^W and GB2-S695^6.42^I are at the interface of TM6 with TM5 and TM7, respectively, close to the allosteric binding site.

Pharmacological modulation of the GABAB receptor

While benzodiazepines are widely used as stereotypical modulators of GABAA receptors with sedative, hypnotic, anticonvulsant, and...
muscle relaxant properties, fewer approved drugs target GABA_B (75–77). We will give a brief overview of compounds targeting GABA_B described to date, spanning a variety of pharmacological efficacies including orthosteric agonists and antagonists, as well as positive and NAMs (Fig. 6), and highlight their clinical application.

The inability of the endogenous agonist, GABA (in structures with PDB IDs 4MS3 and 7CA3), and its derivatives to efficiently penetrate the blood-brain barrier (BBB) (78) has motivated the development of baclofen (79, 80), which has been approved as a muscle relaxant and antispasmodic agent in the United

Fig. 6. Chemical structures of select GABA_B ligands. Compounds used for structural studies described in this review are highlighted in bold, and, in the following, ChEMBL (126) identifiers or PubChem (127) identifiers are given where available. Clinical trial identifiers (clinicaltrials.gov) and indications are listed where available. Agonists: GABA (CHEMBL96), GHB (γ-hydroxybutyric acid; CHEMBL1342, approved for cataplexy, NDA 021196), Lesogaberan (CHEMBL448343, phase 2 clinical trial for gastroesophageal reflux disease, NCT01043185), CGP27492 (CHEMBL112203), CGP35024 (CHEMBL112710), baclofen (CHEMBL701, approved antispasmotic and muscle relaxant, NDA 017851), arbaclofen (CHEMBL301742) (phase 3 clinical trials for autism spectrum disorder and fragile X syndrome, NCT01282268 and NCT01706523), phenibut (CHEMBL315818, approved in Russia), and tolbut (PubChem ID 49344). Antagonists: CGP36216 (CHEMBL325921), CGP36742 (CHEMBL112797, phase 2 clinical trials for Alzheimer's disease, NCT00093951), SCH50911 (CHEMBL1895916), CGP54626 (CHEMBL1213187), CGP55845 (CHEMBL455185), phaclofen (CHEMBL1255941), saclofen (CHEMBL312403), 2-hydroxysaclofen (CHEMBL1256573), and tramiprosate (CHEMBL49082, phase 3 clinical trials for Alzheimer's disease, NCT00088673). PAMs: GS39783 (CHEMBL392394), BHF177 (CHEMBL2346820), ADX71441, fendiline, CGP7930 (CHEMBL1256697), and BHF (CHEMBL2322946). Negative allosteric modulator: compound 14 (CHEMBL3326377).
States in 1977. The subsequent identification of its bioactive enantio-mer R-(−)-baclofen (arbaclofen) (81, 82) and its binding selectivity profile has helped to uncover the existence of a distinct subset of GABA binding sites and the GABA B receptor subtype a few years later (32). Since baclofen requires active transport across the BBB (83), attempts to target GABA B in the CNS prompted the development of more readily bioavailable formulations and prodrugs (84–89).

γ-Hydroxybutyric acid (GHB), which is metabolized into GABA and itself acts as a weak agonist of GABA B (90, 91), displays anesthetic and intoxicating properties and is thought to elicit its effects through a mechanism involving an additional receptor (79, 90, 92, 93). Approved for treatment of cataplexy and narcolepsy (91, 94, 95), GHB and its salts are controlled substances notorious for their illegal and recreational use. While BBB penetration is required for CNS action, a different strategy is used for targeting peripheral GABA B receptors. Thus, Lesogaberan, an agonist with poor brain penetration to avoid CNS side effects, has reached phase 2 clinical trials for the treatment of gastroesophageal reflux disease where it failed to show significant efficacy, halting its further development (96).

To date, no GABA B receptor antagonist has found clinical approval, although they are promising agents for mediating antidepres-sant (97), behavioral, and neuroprotective effects (98). Functionally, antagonizing the inhibition of GABA-mediated neurotransmitter release such as glutamate, noradrenaline, or serotonin could enhance their function, thereby indirectly modulating their downstream effectors. The first selective antagonists described were phaclofen (in 4MRM), saclofen (in 4MQF), and 2-hydroxy saclofen (99–101) Notably, extensions of the methyl moiety of the agonist CGP35024 (SKF97541, in 6U08, 6U09, and 6U0A) (102) were shown to confer antagonist [CGP36216 and CGP36742 (103, 104)]. Antagonists CGP36742 and tramiprosate (homotaurine) have been investigated as treatments of Alzheimer’s disease (105, 106), with the latter still available as a dietary supplement in the United States, while the orally active SCH50911 (107) has been in preclinical development as a treatment for absence seizures. The low affinity of all of these antagonists limits their usefulness as tool compounds (79), prompting development of compounds with nanomolar affinity such as CGP54626 (in 4MRK, 7C75, and 7CUM) and the related CGP55845 (108) (in 6W2X and 6W2Y).

Improvement of ligand potency and selectivity as well as bioavailability remains an active topic of research that has motivated the exploration of a multitude of molecular decorations of the GABA scaffold. The high-resolution GABA B structures help to rationalize structure-activity relationship data for many of these compounds and better understand the functional consequence of the ligand pharmacophore on receptor function. GABA consists of a carboxyl-ic acid and an amino group connected by a three-carbon aliphatic chain. Substitution of the amino group in GABA can decrease its potency or render the resultant molecules inactive; on the other hand, substituting the carboxylic acid group with a phosphonic acid (CGP27492) increased the agonist potency by 15 times (109, 110), although it showed reduced activity for in vivo assays (79). Adding a methyl group to the phosphonic acid (SKF97541) enhanced an in vivo activity, demonstrating nociceptive responses at lower doses compared to baclofen and without any sedation effect (111). However, replacing the methyl group with bulkier ethyl or butyl converts the full agonist SKF97541 into a partial agonist CGP36216 or an antagonist CGP36742, respectively. We attribute this behavior to a two-step transition involved in VFT closure. Initially, an agonist binds to the LB1 of GB1 governed by a network of hydrogen bonds between the amino and carboxy (or phosphonic acid) groups of the ligand and residues in the binding pocket. The amino group interacts with E466 and H287 while the carboxylic or phosphonic group forms a network of hydrogen bonds with S270 and S247 (Fig. 4). In addition, the central aliphatic chain of the ligand makes van der Waals contacts with W182. Removing the amino or carboxy group of the ligands reduces polar interactions rendering it inactive and therefore unable to bind to GB1 VFT. The second step involves the closure of GB1 VFT that adds interactions with residues in the second lobe. These interactions are mainly hydrophobic or aromatic and are mediated by several residues such as W395, V318, and F319 in the LB2 that patches the ligand between the two lobes. In addition, Y367 stabilizes agonist binding by forming a hydrogen bond to ligand’s carboxy/phosphonic acid end via its carbonyl group and making van der Waals interactions with the hydrophobic core of the ligand. Adding bulky groups to either end of the GABA scaffold or increasing the length of its aliphatic chain renders the ligand an antagonist by introducing steric clashes with Y367 and/or W395 and preventing the closure of LB2.

Allosteric modulators as novel opportunity for therapeutic intervention

Allosteric modulators promise safer alternatives to orthosteric synthetic ligands as they can modulate receptor signaling without replacing the action of endogenous ligands. PAMs have the ability to potentiate response to endogenous agonists while binding at distal sites (108). They have little to no intrinsic activity and open up chemical space and the possibility for specific receptor modulation without being constrained to the endogenous ligand chemotype. Their ability to fine-tune receptor response to endogenous agonists where physiologically relevant, and to potentiate effects of co-administered exogenous agonists, minimizes their abuse potential and makes them a sought-after class of compounds for clinical applications (112–114). In case of GABA B receptor, a number of PAMs have been identified (Fig. 6), with CGP7930 (115), followed by pyrimidine-based GS39783 (116) (in 6U08), prototypical examples of PAMs that have found initial promise in animal models related to substance abuse, and showed anxiolytic effects, motivating their continued clinical development. The fluorinated benzofuranone derivative rac-BHFF (in 7C7Q and 7CA3) was obtained in the process of optimization of CGP7930. More recently, the CGP7930 scaffold has been modified to obtain the first NAM, compound 14 (117), also known as CLH304a. Its molecular similarity to the PAM CGP7930, juxtaposed with the disappearance of the well-defined PAM binding site formed by heteromeric contacts around the intersubunit latch region, warrants the future mechanistic exploration of NAMs.

CONCLUSIONS

Recent comprehensive cryo-EM studies described in this review have markedly furthered our understanding of the structure-function relationship of the metabotropic GABA B receptor and shed new light on its complex biology and pharmacology. High-resolution structures of the near full-length receptor obtained in several conforma-tional states provide detailed insights into the unique asymmetric activation mechanism of this heterodimeric receptor. Binding of an agonist in the GB1 VFT triggers a series of concerted motions leading...
to conformational changes in GB2 TMD, priming it for interactions with and activation of G proteins. This activation mechanism is fundamentally different from that of class A, B, and F GPCRs in which the hallmark of activation involves large-scale shifts of TM5, TM6, and TM7 on the intracellular side, opening a large cleft for engagement of G proteins and β-arrestins. On the contrary, in GABA B and, likely, other class C receptors, the motion of TM6 in the active state is constrained by the hetero(or homo)-dimeric interface, while, instead, TM3, TM4, and TM5 of GB2 shift upon activation, creating a relatively shallow groove, mostly within intracellular loops, which could explain the high plasticity of GABA B interactions with G protein and difficulties in capturing the structure of such complexes. The activation transition of GABA B occurs in at least three discrete steps involving two intermediate states, and these states could help to analyze effects of specific mutations and potentially be targeted by NAMs. In addition to these mechanistic insights into receptor activation, new structures revealed previously allosteric sites for calcium in GB1 VFT, endogenous phospholipids inside of both TMDs, and PAMs at the interface between two TMDs.

Besides the advances of our understanding of GABA B, a list of important open questions regarding its structure and function remains. Although difficult to achieve, a high-resolution structure of a GABA B–Gi complex would unveil a critical milestone, structurally characterizing the receptor activation trajectory and helping to decipher G protein recognition, selectivity, and activation mechanisms. Along the same lines, structural identification of NAM binding sites would provide essential templates for structure-based design of novel therapeutic modulators.

In addition to G proteins and KCTDs, high-resolution proteomics identified more than 20 soluble and membrane proteins that interact with GABA B (118). It has been proposed, therefore, that GABA B functions within macromolecular signaling complexes with defined architecture but diverse composition, which could explain their complex biology. Isolating such complexes and determining their structures would further refine signaling mechanisms of this receptor. GABA B is also directly modulated by various toxins such as α-conotoxin, derived from the venom of marine snails of the Conus genus, which has been identified as a potential analgesic (119). It is completely unknown how these toxins are binding to GABA B, which will be a matter of future biochemical and structural investigations.

All structures described in this review represent hetero- or homodimers. However, GABA B is also known to form higher-order oligomers such as tetramers (56). Future studies will be required to find out how these oligomers can be stabilized, as upon detergent solubilization, most of the receptors regress to their dimeric state. Another interesting avenue are heterodimers between different types of receptors, such as GB1 and CaSR, which have been described recently (120).

Last, while structural snapshots provide important high-resolution static views of stable conformational states and complexes, our understanding of the receptor function is incomplete without information about receptor dynamics, obtained by complementary spectroscopic techniques (121). Recent advancements in sample preparation and labeling methods as well as in single-molecule fluorescence, NMR, electron paramagnetic resonance, and computer modeling approaches should translate into accumulation of data on each state’s free energy, dwell time, and exchange rates, providing a comprehensive view of the receptor’s free energy landscape (122). Ultimately, time-resolved serial femtosecond crystallography at x-ray–free electron sources shows promise to record molecular movies of proteins undergoing conformational changes with high spatial and temporal resolution (123, 124). Taking it all together, we expect that our understanding of GABA B function will advance to a new level within the next few years.

Note added in proof: a high resolution cryo-EM structure of GABA B–Gi complex is now available (https://doi.org/10.1038/s41586-021-03507-1).

REFERENCES AND NOTES

30. to (2020).

eaa04827 (2019).

system.

A.

Chem.

a

N.

K.

Bettler, K.

Saltzman, M.

A.

Nature

46

282

Annu. Rev.

Mudge, M.

Ruffier,

Flicek, Ensembl 2020.

282

64.

Gigli, Evolutionary relationships among proteins encoded by

114. E. Augier, Recent advances in the potential of positive allosteric modulators of the GABAB receptor to treat alcohol use disorder. Alcohol Alcohol. 56, 139–148 (2021).

Acknowledgment: We thank Y. Kadychevskaya for the help with preparing illustrations.

Funding: This work was supported by a grant from the National Institute of General Medical Sciences (R35 GM127088). Author contributions: All authors contributed to writing the manuscript. H.S., B.S., and V.C. prepared illustrations. All authors approved the final draft.

Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or in the materials cited herein.

Submitted 28 December 2020
Accepted 14 April 2021
Published 28 May 2021
10.1126/sciadv.abg3362

Citation: H. Shaye, B. Stauch, C. Gati, V. Chere佐, Molecular mechanisms of metabotropic GABAB receptor function. Sci. Adv. 7, eabg3362 (2021).
Molecular mechanisms of metabotropic GABA_B receptor function
Hamidreza Shaye, Benjamin Stauch, Cornelius Gati and Vadim Cherezov

Sci Adv 7 (22), eabg3362
DOI: 10.1126/sciadv.abg3362